ALERT_HANDLER DV document
Goals
- DV
- Verify all ALERT_HANDLER IP features by running dynamic simulations with a SV/UVM based testbench
- Develop and run all tests based on the testplan below towards closing code and functional coverage on the IP and all of its sub-modules
- Verify transmitter and receiver pairs for alert (/hw/ip/prim/dv/prim_alert) and escalation (/hw/ip/prim/dv/prim_esc) via direct stimulus.
- FPV
- Verify TileLink device protocol compliance with an SVA based testbench
- Verify transmitter and receiver pairs for alert and escalator
- Verify alert_handler_esc_timer and alert_handler_ping_timer
Current status
Design features
For detailed information on ALERT_HANDLER design features, please see the ALERT_HANDLER HWIP technical specification.
Testbench architecture
ALERT_HANDLER testbench has been constructed based on the CIP testbench architecture.
Block diagram
Top level testbench
Top level testbench is located at hw/ip/alert_handler/dv/tb/tb.sv
. It instantiates the ALERT_HANDLER DUT module hw/ip/alert_handler/rtl/alert_handler.sv
.
In addition, it instantiates the following interfaces, connects them to the DUT and sets their handle into uvm_config_db
:
- Clock and reset interface
- TileLink host interface
- ALERT_HANDLER IOs
- Alerts and escalations(
alert_esc_if
) - Interrupts (
pins_if
)
The alert_handler testbench environment can be reused in chip level testing.
Common DV utility components
The following utilities provide generic helper tasks and functions to perform activities that are common across the project:
Global types & methods
All common types and methods defined at the package level can be found in
alert_handler_env_pkg
. Some of them in use are:
parameter uint NUM_MAX_ESC_SEV = 8;
TL_agent
ALERT_HANDLER testbench instantiates (already handled in CIP base env) tl_agent which provides the ability to drive and independently monitor random traffic via TL host interface into ALERT_HANDLER device.
ALERT_ESC Agent
ALERT_ESC agent is used to drive and monitor transmitter and receiver pairs for the alerts and escalators. Alert_handler DUT includes alert_receivers and esc_senders, so the alert_esc agent will drive output signals of the alert_senders and esc_receivers.
UVM RAL Model
The ALERT_HANDLER RAL model is created with the ralgen
FuseSoC generator script automatically when the simulation is at the build stage.
It can be created manually by invoking regtool
.
Stimulus strategy
Test sequences
All test sequences reside in hw/ip/alert_handler/dv/env/seq_lib
.
The alert_handler_base_vseq
virtual sequence is extended from cip_base_vseq
and serves as a starting point.
All test sequences are extended from alert_handler_base_vseq
.
It provides commonly used handles, variables, functions and tasks that the test sequences can simple use / call.
Some of the most commonly used tasks / functions are as follows:
- alert_handler_init: Configure alert_handler DUT by writing to
intr_en
,alert_en_shadowed_*
,alert_class_shadowed_*
,loc_alert_en_shadowed_*
,loc_alert_class_shadowed_*
registers. - drive_alert: Drive alert_tx signal pairs through
alert_sender_driver
. - drive_esc_rsp: Drive esc_rx signal pairs through
esc_receiver_driver
. - read_ecs_status: Readout registers that reflect escalation status, including
classa/b/c/d_accum_cnt
,classa/b/c/d_esc_cnt
, andclassa/b/c/d_state
. - wait_alert_handshake_done: Wait for alert_rx/tx handshake to finish. If the alert’s low-power-group(LPG) is enabled, immediately return.
- wait_esc_handshake_done: Wait for esc_rx/tx handshake to finish by reading
class*_state
registers and check esc_rx/tx signals. - set_alert_lpg: Given alert index, find the linked LPG group and enabled the LPG group by driving
lpg_cg_en
orlpg_rst_en
to Mubi4True. - run_esc_rsp_seq_nonblocking: A non-blocking sequence to drive
esc_tx
when received escalation or escalation-ping requests. - run_alert_ping_rsp_seq_nonblocking: A non-blocking sequence to drive
alert_rx
when received alert-ping requests.
Functional coverage
To ensure high quality constrained random stimulus, it is necessary to develop a functional coverage model. The detailed covergroups are documented under alert_handler testplan.
Self-checking strategy
Scoreboard
The alert_handler_scoreboard
is primarily used for end to end checking.
It creates the following analysis ports to retrieve the data monitored by corresponding interface agents:
- tl_a_chan_fifo: tl address channel
- tl_d_chan_fifo: tl data channel
- alert_fifo: An array of
alert_fifo
that connects to corresponding alert_monitors - esc_fifo: An array of
esc_fifo
that connects to corresponding esc_monitors
Alert_handler scoreboard monitors all valid CSR registers, alert handshakes, and escalation handshakes. To ensure certain alert, interrupt, or escalation signals are triggered at the expected time, the alert_handler scoreboard implemented a few counters:
- intr_cnter_per_class[NUM_ALERT_HANDLER_CLASSES]: Count number of clock cycles that the interrupt bit stays high.
If the stored number is larger than the
timeout_cyc
registers, the corresponding escalation is expected to be triggered - accum_cnter_per_class[NUM_ALERT_HANDLER_CLASSES]: Count number of alerts triggered under the same class.
If the stored number is larger than the
accum_threshold
registers, the corresponding escalation is expected to be triggered - esc_cnter_per_signal[NUM_ESC_SIGNALS]: Count number of clock cycles that each escalation signal stays high.
Compare the counter against
phase_cyc
registers
The alert_handler scoreboard is parameterized to support different number of classes, alert pairs, and escalation pairs.
Assertions
- TLUL assertions: The
tb/alert_handler_bind.sv
binds thetlul_assert
assertions to the IP to ensure TileLink interface protocol compliance. - Unknown checks on DUT outputs: The RTL has assertions to ensure all outputs are initialized to known values after coming out of reset.
Building and running tests
We are using our in-house developed regression tool for building and running our tests and regressions. Please take a look at the link for detailed information on the usage, capabilities, features and known issues. Here’s how to run a smoke test:
$ $REPO_TOP/util/dvsim/dvsim.py $REPO_TOP/hw/$CHIP/ip_autogen/alert_handler/dv/alert_handler_sim_cfg.hjson -i alert_handler_smoke
In this run command, $CHIP can be top_earlgrey, etc.