HMAC DV document
Goals
- DV
- Verify all HMAC IP features by running dynamic simulations with a SV/UVM based testbench
- Develop and run all tests based on the testplan below towards closing code and functional coverage on the IP and all of its sub-modules
- FPV
- Verify TileLink device protocol compliance with an SVA based testbench
Current status
Design features
For detailed information on HMAC design features, please see the HMAC design specification.
Testbench architecture
HMAC testbench has been constructed based on the CIP testbench architecture.
Block diagram
Top level testbench
Top level testbench is located at hw/ip/hmac/dv/tb/tb.sv
. It instantiates the
HMAC DUT module hw/ip/hmac/rtl/hmac.sv
. In addition, it instantiates the following
interfaces and sets their handle into uvm_config_db
:
- Clock and reset interface
- TileLink host interface
- Interrupts (
pins_if
)
Common DV utility components
The following utilities provide generic helper tasks and functions to perform activities that are common across the project:
Global types & methods
All common types and methods defined at the package level can be found in env/hmac_env_pkg
.
Some of them in use are:
parameter uint32 HMAC_MSG_FIFO_DEPTH = 16;
parameter uint32 HMAC_MSG_FIFO_DEPTH_BYTES = HMAC_MSG_FIFO_DEPTH * 4;
parameter uint32 HMAC_MSG_FIFO_SIZE = 2048;
TL_agent
HMAC instantiates (handled in CIP base env) tl_agent which provides the ability to drive and independently monitor random traffic via TL host interface into HMAC device.
UVM RAL Model
The HMAC RAL model is created with the ralgen
FuseSoC generator script automatically when the simulation is at the build stage.
It can be created manually by invoking regtool
:
Reference models
To check the correctness of the output for SHA256 and HMAC, the testbench uses the C reference model. Messages and keys generated by constrained random test sequences are passed on to the reference model. Then the hmac scoreboard will compare the reference model’s expected digest data with the DUT output.
Stimulus strategy
Test sequences
All test sequences reside in hw/ip/hmac/dv/env/seq_lib
. The hmac_base_vseq
virtual sequence is extended from cip_base_vseq
and serves as a starting point.
All test sequences are extended from hmac_base_vseq
. It provides commonly used handles,
variables, functions and tasks that the test sequences can simple use / call.
Some of the most commonly used tasks / functions are as follows:
hmac_init
: initialize hmac settings including configurations and interrupt enablescsr_rd_digest
: read digest values from the CSR registerswr_key
: write key values into the CSR registerswr_msg
: write messages into the hmac_msg_fifoburst_wr_msg
: burst write messages into the hmac_msg_fifocompare_digest
: compare the read digest result with the expected valuessave_and_restore
: execute Save and Restore as described in the SW Guide
Standard test vectors
Besides constrained random test sequences, HMAC test sequences also include standard SHA-2 256 and HMAC test vectors from NIST and IETF to test SHA-2 256/384/512 and HMAC using SHA-2 256/(384/512 TODO #22932)) with 256-bit keys. The standard test vectors provide messages, keys (for the keyed HMAC tests only), and expected results. The expected results are used to verify the DUT outputs.
Functional coverage
To ensure high quality constrained random stimulus, it is necessary to develop functional coverage model. The following covergroups have been developed to prove that the test intent has been adequately met:
cfg_cg
: covers configuration registers in HMACstatus_cg
: covers status registers in HMACmsg_len_cg
: covers streamed-in message length in HMACerr_code_cg
: covers possible error codes raisingwr_config_during_hash_cg
: covers writing CFG register during ongoing HASHwr_key_during_hash_cg
: covers writing KEY register during ongoing HASHwr_key_during_sha_only_cg
: covers writing key length should be seamless while HMAC disabledwr_msg_during_hash_cg
: covers writing a message while HASH is ongoingtrig_rst_during_hash_cg
: covers triggering a reset during HASH is ongoingrd_digest_during_hmac_en_cg
: covers read and check DIGEST while HMAC is enabled/disabledsave_and_restore_cg
: covers Save and Restore with: same context, different contexts and only stop/continue without saving and restoring
Self-checking strategy
Scoreboard
The hmac_scoreboard
is primarily used for end to end checking. It creates the
following analysis ports to retrieve the data monitored by corresponding
interface agents:
- tl_a_chan_fifo: tl address channel
- tl_d_chan_fifo: tl data channel
Hmac scoreboard monitors all hmac valid CSR registers, hmac msg_fifo (addr: ’h800 to ’hfff), and interrupt pins.
For a write transaction, during the address channel, CSR values are updated in RAL. Msg_fifo values are updated to an internal msg queue. Once the data finishes streaming, hmac scoreboard will input the msg queue to the C model and calculate the expected output, then update the corresponding RAL registers.
For a read transaction, during the address channel, for status related CSRs (such as fifo_full, fifo_empty, etc), hmac will predict its value according to the cycle accurate model. During the data channel, hmac scoreboard will compare the read data with expected data in RAL.
Scoreboard cycle accurate checking model
Hmac scoreboard contains a cycle accurate checking to model the hmac
internal message fifo. It has two pointers(hmac_wr_cnt
and hmac_wr_cnt
) to simulate the
read and write of the hmac internal message fifo. These two pointers are updated at the
negedge of the clock cycle to avoid glitch. Read pointer is incremented one
clock cycle after the write pointer (except if HMAC is enabled, then read will
first wait 80 clock cycles for the key padding). Hmac fifo full is asserted when
hmac_wr_cnt - hmac_wr_cnt == 16
. Hmac fifo depth is checked against the difference
between hmac_wr_cnt
and hmac_rd_cnt
.
Assertions
- TLUL assertions: The
tb/hmac_bind.sv
binds thetlul_assert
assertions to hmac to ensure TileLink interface protocol compliance. - Unknown checks on DUT outputs: The RTL has assertions to ensure all outputs are initialized to known values after coming out of reset.
Building and running tests
We are using our in-house developed regression tool for building and running our tests and regressions. Please take a look at the link for detailed information on the usage, capabilities, features and known issues. Here’s how to run a smoke test:
$ $REPO_TOP/util/dvsim/dvsim.py $REPO_TOP/hw/ip/hmac/dv/hmac_sim_cfg.hjson -i hmac_smoke