1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
// Copyright lowRISC contributors (OpenTitan project).
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
use anyhow::{bail, ensure, Context, Result};
use num_bigint_dig::BigUint;
use foreign_types::{ForeignType, ForeignTypeRef};
use openssl::asn1::{Asn1Object, Asn1ObjectRef, Asn1OctetStringRef};
use openssl::x509::X509;
use crate::asn1::Oid;
use crate::template::{
BasicConstraints, CertificateExtension, DiceTcbInfoExtension, DiceTcbInfoFlags, FirmwareId,
HashAlgorithm, KeyUsage, Value,
};
/// X509 extension reference.
pub struct X509ExtensionRef<'a> {
// Extension type.
pub object: &'a Asn1ObjectRef,
// Critical marker.
pub critical: bool,
// Extension data.
pub data: &'a Asn1OctetStringRef,
}
/// Return the list of extensions of an X509 cerificate.
pub fn x509_get_extensions(x509: &X509) -> Result<Vec<X509ExtensionRef>> {
let mut exts = Vec::new();
// SAFETY: the rust openssl binding guarantees that x509 is a valid object.
let ext_count = unsafe { openssl_sys::X509_get_ext_count(x509.as_ptr()) };
for index in 0..ext_count {
// SAFETY: the rust openssl binding guarantees that x509 is a valid object
// and `index` is a valid index.
// From the documentation of X509_get_ext:
// The returned extension is an internal pointer which must not be freed
// up by the application. Therefore this pointer is valid as long as the X509
// object lives.
let ext = unsafe { openssl_sys::X509_get_ext(x509.as_ptr(), index) };
// SAFETY: `ext` is a valid object.
let critical = unsafe { openssl_sys::X509_EXTENSION_get_critical(ext) };
// In the ASN1, the critical marker is a boolean so it's actually impossible for
// openssl to return anything but 0 and 1, so throw in error in case we see anything else.
let critical = match critical {
0 => false,
1 => true,
_ => bail!("openssl returned non-boolean critical marker for extension {index}"),
};
// SAFETY: `ext` is a valid object and the returned pointer is marked with the lifetime
// of the X509 object that owns the memory.
let object = unsafe {
// From the documentation of X509_EXTENSION_get_data:
// The returned pointer is an internal value which must not be freed up.
let data = openssl_sys::X509_EXTENSION_get_object(ext);
Asn1ObjectRef::from_ptr(data)
};
// SAFETY: `ext` is a valid object and the returned pointer is marked with the lifetime
// of the X509 object that owns the memory.
let data = unsafe {
// From the documentation of X509_EXTENSION_get_data:
// The returned pointer is an internal value which must not be freed up.
let data = openssl_sys::X509_EXTENSION_get_data(ext);
Asn1OctetStringRef::from_ptr(data)
};
exts.push(X509ExtensionRef {
object,
critical,
data,
})
}
Ok(exts)
}
// From the DICE specification:
// https://trustedcomputinggroup.org/wp-content/uploads/DICE-Attestation-Architecture-r23-final.pdf
//
// tcg OBJECT IDENTIFIER ::= {2 23 133}
// tcg-dice OBJECT IDENTIFIER ::= { tcg platformClass(5) 4 }
// tcg-dice-TcbInfo OBJECT IDENTIFIER ::= {tcg-dice 1}
// DiceTcbInfo ::== SEQUENCE {
// vendor [0] IMPLICIT UTF8String OPTIONAL,
// model [1] IMPLICIT UTF8String OPTIONAL,
// version [2] IMPLICIT UTF8String OPTIONAL,
// svn [3] IMPLICIT INTEGER OPTIONAL,
// layer [4] IMPLICIT INTEGER OPTIONAL,
// index [5] IMPLICIT INTEGER OPTIONAL,
// fwids [6] IMPLICIT FWIDLIST OPTIONAL,
// flags [7] IMPLICIT OperationalFlags OPTIONAL,
// vendorInfo [8] IMPLICIT OCTET STRING OPTIONAL,
// type [9] IMPLICIT OCTET STRING OPTIONAL
// }
// FWIDLIST ::== SEQUENCE SIZE (1..MAX) OF FWID
// FWID ::== SEQUENCE {
// hashAlg OBJECT IDENTIFIER,
// digest OCTET STRING
// }
// OperationalFlags ::= BIT STRING {
// notConfigured (0),
// notSecure (1),
// recovery (2),
// debug (3)
// }
// See DiceTcbInfo.
#[derive(asn1::Asn1Read)]
struct Fwid<'a> {
pub hash_alg: asn1::ObjectIdentifier,
pub digest: &'a [u8],
}
// This is an internal structure used to parse a DiceTcbInfo extension using the `asn1`
// crate. We cannot use the `DiceTcbInfoExtension` in `template` since we
// need to use specific annotations and types so that the `asn` library can
// derive an ASN1 parser.
#[derive(asn1::Asn1Read)]
struct DiceTcbInfo<'a> {
#[implicit(0)]
pub vendor: Option<asn1::Utf8String<'a>>,
#[implicit(1)]
pub model: Option<asn1::Utf8String<'a>>,
#[implicit(2)]
pub version: Option<asn1::Utf8String<'a>>,
#[implicit(3)]
pub svn: Option<asn1::BigInt<'a>>,
#[implicit(4)]
pub layer: Option<asn1::BigInt<'a>>,
#[implicit(5)]
pub index: Option<asn1::BigInt<'a>>,
#[implicit(6)]
pub fwids: Option<asn1::SequenceOf<'a, Fwid<'a>>>,
#[implicit(7)]
pub flags: Option<DiceTcbInfoFlags>,
#[implicit(8)]
pub vendor_info: Option<&'a [u8]>,
#[implicit(9)]
pub tcb_type: Option<&'a [u8]>,
}
fn convert_hash_algorithm(objid: &asn1::ObjectIdentifier) -> Result<HashAlgorithm> {
for (oid, hashalg) in [(Oid::Sha256, HashAlgorithm::Sha256)] {
if *objid
== asn1::ObjectIdentifier::from_string(oid.oid())
.expect("Cannot convert Oid to asn1::ObjectIdentifier")
{
return Ok(hashalg);
}
}
bail!("unsupported hash algorithm {}", objid);
}
fn asn1utf8_to_str(s: &asn1::Utf8String) -> Value<String> {
Value::literal(s.as_str().to_string())
}
fn asn1bigint_to_bn(bn: &asn1::BigInt) -> Value<BigUint> {
Value::literal(BigUint::from_bytes_be(bn.as_bytes()))
}
impl DiceTcbInfo<'_> {
fn to_dice_extension(&self) -> Result<DiceTcbInfoExtension> {
let fw_ids = self
.fwids
.as_ref()
.map(|fwids| {
fwids
.clone()
.map(|fwid| {
Ok(FirmwareId {
hash_algorithm: convert_hash_algorithm(&fwid.hash_alg)
.context("unknown hash algorithm")?,
digest: Value::literal(fwid.digest.to_vec()),
})
})
.collect::<Result<Vec<_>>>()
})
.transpose()
.context("cannot parse DICE TCB firmware IDs")?;
// Vendor info is not supported.
ensure!(
self.index.is_none(),
"the parser does not support DICE TCB index"
);
ensure!(
self.vendor_info.is_none(),
"the parser does not support DICE TCB vendor info"
);
ensure!(
self.tcb_type.is_none(),
"the parser does not support DICE TCB type"
);
Ok(DiceTcbInfoExtension {
model: self.model.as_ref().map(asn1utf8_to_str),
vendor: self.vendor.as_ref().map(asn1utf8_to_str),
version: self.version.as_ref().map(asn1utf8_to_str),
svn: self.svn.as_ref().map(asn1bigint_to_bn),
layer: self.layer.as_ref().map(asn1bigint_to_bn),
fw_ids,
flags: self.flags.clone(),
})
}
}
impl<'a> asn1::SimpleAsn1Readable<'a> for DiceTcbInfoFlags {
const TAG: asn1::Tag = asn1::OwnedBitString::TAG;
fn parse_data(_data: &'a [u8]) -> asn1::ParseResult<Self> {
let result = asn1::OwnedBitString::parse_data(_data)?;
let bs = result.as_bitstring();
if bs.as_bytes().len() != 1 || bs.padding_bits() != 4 {
// We expect 4 bits.
asn1::ParseResult::Err(asn1::ParseError::new(asn1::ParseErrorKind::InvalidLength))
} else {
Ok(DiceTcbInfoFlags {
not_configured: Value::Literal(bs.has_bit_set(0)),
not_secure: Value::Literal(bs.has_bit_set(1)),
recovery: Value::Literal(bs.has_bit_set(2)),
debug: Value::Literal(bs.has_bit_set(3)),
})
}
}
}
// From https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.3
// KeyUsage ::= BIT STRING {
// digitalSignature (0),
// nonRepudiation (1), -- recent editions of X.509 have
// -- renamed this bit to contentCommitment
// keyEncipherment (2),
// dataEncipherment (3),
// keyAgreement (4),
// keyCertSign (5),
// cRLSign (6),
// encipherOnly (7),
// decipherOnly (8) }
impl<'a> asn1::SimpleAsn1Readable<'a> for KeyUsage {
const TAG: asn1::Tag = asn1::OwnedBitString::TAG;
fn parse_data(_data: &'a [u8]) -> asn1::ParseResult<Self> {
let result = asn1::OwnedBitString::parse_data(_data)?;
let bs = result.as_bitstring();
// List of bits that this parser supports. Any bit set outside of
// these will be an error because we cannot record it.
const PARSED_BITS: &[usize] = &[0, 4, 5];
let len = bs.as_bytes().len() * 8 - bs.padding_bits() as usize;
for i in 0..len {
if bs.has_bit_set(i) && !PARSED_BITS.contains(&i) {
// FIXME This will not return a very readable error message but the asn1
// does not support arbitrary string errors.
return asn1::ParseResult::Err(asn1::ParseError::new(
asn1::ParseErrorKind::ExtraData,
));
}
}
Ok(KeyUsage {
digital_signature: Some(Value::Literal(bs.has_bit_set(0))),
key_agreement: Some(Value::Literal(bs.has_bit_set(4))),
cert_sign: Some(Value::Literal(bs.has_bit_set(5))),
})
}
}
// From https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.1
// AuthorityKeyIdentifier ::= SEQUENCE {
// keyIdentifier [0] KeyIdentifier OPTIONAL,
// authorityCertIssuer [1] GeneralNames OPTIONAL,
// authorityCertSerialNumber [2] CertificateSerialNumber OPTIONAL }
//
// KeyIdentifier ::= OCTET STRING
#[derive(asn1::Asn1Read)]
struct AuthorityKeyIdentifier<'a> {
#[implicit(0)]
pub key_id: Option<&'a [u8]>,
}
/// Try to parse an X509 extension as a DICE TCB info extension.
pub fn parse_dice_tcb_info_extension(ext: &[u8]) -> Result<DiceTcbInfoExtension> {
asn1::parse_single::<DiceTcbInfo>(ext)
.context("cannot parse DICE extension")?
.to_dice_extension()
}
// This is an internal structure used to parse a Basic Constraints extension using the `asn1`
// crate. We cannot use the `BasicConstraints` in `template` since we
// need to use specific annotations and types so that the `asn` library can
// derive an ASN1 parser.
#[derive(asn1::Asn1Read)]
struct BasicConstraintsInternal {
ca: bool,
}
impl BasicConstraintsInternal {
fn to_basic_constraints(&self) -> Result<BasicConstraints> {
Ok(BasicConstraints {
ca: Value::Literal(self.ca),
})
}
}
pub fn parse_key_usage(ext: &X509ExtensionRef) -> Result<KeyUsage> {
Ok(asn1::parse_single::<KeyUsage>(ext.data.as_slice())?)
}
pub fn parse_basic_constraints(ext: &X509ExtensionRef) -> Result<BasicConstraints> {
asn1::parse_single::<BasicConstraintsInternal>(ext.data.as_slice())
.context("cannot parse DICE extension")?
.to_basic_constraints()
}
pub fn parse_authority_key_id(ext: &X509ExtensionRef) -> Result<Vec<u8>> {
let auth = asn1::parse_single::<AuthorityKeyIdentifier>(ext.data.as_slice())?;
Ok(auth
.key_id
.context("authority key identifier extension is empty")?
.to_vec())
}
pub fn parse_subject_key_id(ext: &X509ExtensionRef) -> Result<Vec<u8>> {
// From https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.2
// SubjectKeyIdentifier ::= KeyIdentifier
//
// KeyIdentifier ::= OCTET STRING
let subj = asn1::parse_single::<&[u8]>(ext.data.as_slice())?;
Ok(subj.to_vec())
}
/// Try to parse an X509 extension.
pub fn parse_extension(ext: &X509ExtensionRef) -> Result<CertificateExtension> {
let dice_oid =
Asn1Object::from_str(Oid::DiceTcbInfo.oid()).expect("cannot create object ID from string");
// The openssl library does not provide a way to compare between two Asn1Object so compare the raw DER.
Ok(match ext.object.to_owned().as_slice() {
obj if obj == dice_oid.as_slice() => {
CertificateExtension::DiceTcbInfo(parse_dice_tcb_info_extension(ext.data.as_slice())?)
}
_ => bail!("unknown extension type {}", ext.object,),
})
}