ot_certs/template/
subst.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
// Copyright lowRISC contributors (OpenTitan project).
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0

//! This module defines substitution data that can be used to replace the
//! variables in a template by actual values.

use anyhow::{bail, ensure, Context, Result};
use hex::{FromHex, ToHex};
use indexmap::IndexMap;
use num_bigint_dig::{BigUint, ToBigInt};
use num_traits::Num;
use serde::{Deserialize, Serialize};

use crate::template::{
    BasicConstraints, Certificate, CertificateExtension, Conversion, DiceTcbInfoExtension,
    DiceTcbInfoFlags, EcPublicKey, EcPublicKeyInfo, EcdsaSignature, FirmwareId, KeyUsage,
    Signature, SubjectPublicKeyInfo, Template, Value, Variable, VariableType,
};

/// Substitution value: this is the raw value loaded from a hjson/json file
/// before any parsing.
#[derive(Clone, Debug, Deserialize, Serialize, PartialEq, Eq)]
#[serde(untagged)]
pub enum SubstValue {
    ByteArray(Vec<u8>),
    Int32(i32),
    String(String),
    Boolean(bool),
}

/// Substitution data for a certificate: it maps certain variables to concrete
/// values.
#[derive(Clone, Debug, Default, Deserialize, Serialize)]
pub struct SubstData {
    #[serde(flatten)]
    pub values: IndexMap<String, SubstValue>,
}

impl SubstData {
    pub fn new() -> SubstData {
        SubstData {
            values: IndexMap::new(),
        }
    }

    pub fn to_json(&self) -> Result<String> {
        Ok(serde_json::to_string(&self)?)
    }

    pub fn from_json(content: &str) -> Result<SubstData> {
        Ok(serde_json::from_str(content)?)
    }
}

/// Trait for variable substition: implement this trait to support substition
/// in data structure.
pub trait Subst: Sized {
    /// Substitute the indicated variables by their values and leave the others
    /// untouched.
    fn subst(&self, data: &SubstData) -> Result<Self>;
}

impl SubstValue {
    // Parse the content of the data according to a specified
    // type. If the type specified size is zero then any size is accepted, otherwise
    // the size constraint will be enforced.
    pub fn parse(&self, var_type: &VariableType) -> Result<SubstValue> {
        match *var_type {
            VariableType::ByteArray { size } => self.parse_as_byte_array(size),
            VariableType::Integer { size } => self.parse_as_integer(size),
            VariableType::String { size } => self.parse_as_string(size),
            VariableType::Boolean => self.parse_as_boolean(),
        }
    }

    fn parse_as_byte_array(&self, size: usize) -> Result<SubstValue> {
        match self {
            SubstValue::ByteArray(bytes) => {
                ensure!(
                    size == 0 || bytes.len() == size,
                    "expected a byte array of size {size} but got {} bytes",
                    bytes.len()
                );
                Ok(self.clone())
            }
            SubstValue::String(s) => {
                // To be consistent with the template, interpret this
                // as a hexstring.
                let bytes = Vec::<u8>::from_hex(s)
                    .with_context(|| format!("cannot parse {s} as an hexstring"))?;
                ensure!(
                    size == 0 || bytes.len() == size,
                    "expected a byte array of size {size} but got {} bytes",
                    bytes.len()
                );
                Ok(SubstValue::ByteArray(bytes))
            }
            _ => bail!("cannot parse value {self:?} as a byte-array"),
        }
    }

    fn parse_as_integer(&self, size: usize) -> Result<SubstValue> {
        match self {
            SubstValue::ByteArray(bytes) => {
                // Integer are represented as byte arrays.
                ensure!(
                    size == 0 || bytes.len() <= size,
                    "expected an integer that fits on {size} bytes but it uses {} bytes",
                    bytes.len()
                );
                Ok(self.clone())
            }
            SubstValue::String(s) => {
                // Unless the string starts with '0x', expect a decimal string.
                let (radix, s) = s
                    .strip_prefix("0x")
                    .map_or_else(|| (10, s.as_str()), |s| (16, s));
                let val = BigUint::from_str_radix(s, radix)
                    .with_context(|| format!("cannot parse {s} as an integer"))?;
                let bytes = val.to_bytes_be();
                ensure!(
                    size == 0 || bytes.len() <= size,
                    "expected an integer that fits on {size} bytes but it uses {} bytes",
                    bytes.len()
                );
                Ok(SubstValue::ByteArray(bytes))
            }
            SubstValue::Int32(x) => {
                let bigint = x.to_bigint().expect("cannot convert a i32 to BigInt");
                let bytes = bigint.to_signed_bytes_be();
                ensure!(
                    size == 0 || bytes.len() <= size,
                    "expected an integer that fits on {size} bytes but it uses 4 bytes"
                );
                Ok(SubstValue::ByteArray(bytes))
            }
            _ => bail!("cannot parse value {self:?} as an integer"),
        }
    }

    fn parse_as_string(&self, size: usize) -> Result<SubstValue> {
        match self {
            SubstValue::String(s) => {
                ensure!(
                    size == 0 || s.len() <= size,
                    "expected a string of at most {size} bytes but it uses {} bytes",
                    s.len()
                );
                Ok(self.clone())
            }
            _ => bail!("cannot parse value {self:?} as a string"),
        }
    }

    fn parse_as_boolean(&self) -> Result<SubstValue> {
        Ok(match self {
            SubstValue::Boolean(_) => self.clone(),
            SubstValue::String(s) => match s.as_str() {
                "true" => SubstValue::Boolean(true),
                "false" => SubstValue::Boolean(false),
                _ => bail!("cannot parse string '{s}' as a boolean, used either 'true' or 'false'"),
            },
            _ => bail!("cannot parse value {self:?} as a boolean"),
        })
    }
}

impl Subst for Template {
    // Substitute data into the template. Variables that are not
    // specified in the data are left untouched. Variables that appear
    /// in the data will be removed from the template's list of variables.
    // The substitution will take into account the type specified in the template
    // variables. Consider an example where the substitution data
    // specifies:
    //   "x": String("3256")
    // If the template specifies:
    //   x: { type: "integer" }
    // Then "3256" will be parsed as integer 3256. On the other hand,
    // if the template specifies:
    //   x: { type: "byte-array" }
    // Then "3256" will be parsed as an hexstring and represent [0x32, 0x56].
    // This function will return an error if a substitution does not make sense
    /// (wrong type or impossible conversion).
    fn subst(&self, data: &SubstData) -> Result<Template> {
        // The first step is to match all variables in the substitution
        // data with variables in the template to parse them if necessary.
        let mut variables = self.variables.clone();
        let mut new_data = SubstData::new();
        for (var_name, val) in data.values.iter() {
            let Some(var_type) = variables.shift_remove(var_name) else {
                // Variable does not appear in the template: ignore it.
                continue;
            };
            new_data.values.insert(var_name.clone(), val.parse(&var_type).with_context(
                || format!("cannot parse content of substitution variable {var_name} according to the type {var_type:?} specified in the template ")
            )?);
        }
        Ok(Template {
            name: self.name.clone(),
            variables,
            certificate: self.certificate.subst(&new_data)?,
        })
    }
}

/// Trait to implement conversion from the raw (h)json data to structured data. This is used to implement variable
/// substitution in `Subst`.
pub trait ConvertValue<T>
where
    Self: Sized,
{
    /// Convert from fraw data to structured data (i.e. deserialize). Optionally provide
    /// an indication of how the data should first be parsed and how it should be converted
    /// to the type `T`.
    fn convert(&self, convert: &Option<Conversion>) -> Result<T>;
    /// Convert from structured data to raw data (i.e. serialize). The returned value shall
    /// satisfy that if then converted using `convert(None, None)` then it should return the same
    /// value.
    fn unconvert(val: &T) -> Result<Self>;
}

impl ConvertValue<Vec<u8>> for SubstValue {
    fn convert(&self, convert: &Option<Conversion>) -> Result<Vec<u8>> {
        // Calling `parse` will ensure that that the returned value is a byte
        // array, this avoids duplicating code.
        let val = self.parse(&VariableType::ByteArray { size: 0 })?;
        // The only supported conversion to byte array is from a byte array.
        let SubstValue::ByteArray(bytes) = val else {
            bail!("cannot substitute a byte-array field with value {:?}", self);
        };
        ensure!(convert.is_none(), "substitution of a byte-array field with a byte-array value cannot specify a conversion");
        Ok(bytes.clone())
    }

    fn unconvert(val: &Vec<u8>) -> Result<SubstValue> {
        Ok(SubstValue::ByteArray(val.clone()))
    }
}

impl ConvertValue<BigUint> for SubstValue {
    fn convert(&self, convert: &Option<Conversion>) -> Result<BigUint> {
        // Calling `parse` will ensure that that the returned value is a byte array.
        let val = self.parse(&VariableType::Integer { size: 0 })?;
        match val {
            SubstValue::ByteArray(bytes) => {
                // No conversion means big-endian.
                match convert {
                    None | Some(Conversion::BigEndian) => {
                        Ok(BigUint::from_bytes_be(&bytes))
                    }
                    _ => bail!("substitution of an integer field with a byte-array cannot specify conversion {:?}", convert)
                }
            }
            _ => bail!("cannot substitute an integer field with value {:?}", self),
        }
    }

    fn unconvert(val: &BigUint) -> Result<SubstValue> {
        // Big-endian byte array.
        Ok(SubstValue::ByteArray(val.to_bytes_be()))
    }
}

impl ConvertValue<String> for SubstValue {
    fn convert(&self, convert: &Option<Conversion>) -> Result<String> {
        match self {
            SubstValue::String(x) => {
                // No conversion supported.
                ensure!(convert.is_none(), "substitution of a string field with a string value cannot specify a conversion");
                Ok(x.clone())
            },
            SubstValue::ByteArray(bytes) => {
                match convert {
                    Some(Conversion::LowercaseHex) => {
                        Ok(bytes.encode_hex::<String>())
                    }
                    _ => bail!("substitution of a string field with a byte-array cannot specify conversion {:?}", convert)
                }
            }
            _ => bail!("cannot substitute a string field with value {:?}", self),
        }
    }

    fn unconvert(val: &String) -> Result<SubstValue> {
        // Big-endian byte array.
        Ok(SubstValue::String(val.clone()))
    }
}

impl ConvertValue<bool> for SubstValue {
    fn convert(&self, convert: &Option<Conversion>) -> Result<bool> {
        let SubstValue::Boolean(b) = self else {
            bail!("cannot substitute a boolean field with value {:?}", self)
        };
        // No conversion supported.
        ensure!(
            convert.is_none(),
            "substitution of a boolean field with a boolean value cannot specify a conversion"
        );
        Ok(*b)
    }

    fn unconvert(val: &bool) -> Result<SubstValue> {
        // Big-endian byte array.
        Ok(SubstValue::Boolean(*val))
    }
}

impl<T> Subst for Value<T>
where
    Value<T>: Clone,
    SubstValue: ConvertValue<T>,
{
    fn subst(&self, data: &SubstData) -> Result<Value<T>> {
        match self {
            Value::Literal(_) => Ok(self.clone()),
            Value::Variable(Variable { name, convert }) => match data.values.get(name) {
                None => Ok(self.clone()),
                Some(val) => Ok(Value::Literal(val.convert(convert)?)),
            },
        }
    }
}

impl Subst for Certificate {
    fn subst(&self, data: &SubstData) -> Result<Certificate> {
        Ok(Certificate {
            serial_number: self
                .serial_number
                .subst(data)
                .context("cannot substitute serial number")?,
            not_before: self
                .not_before
                .subst(data)
                .context("cannot substitute not_before")?,
            not_after: self
                .not_after
                .subst(data)
                .context("cannot substitute not_after")?,
            issuer: self
                .issuer
                .subst(data)
                .context("cannot substitute issuer")?,
            subject: self
                .subject
                .subst(data)
                .context("cannot substitute subject")?,
            subject_public_key_info: self
                .subject_public_key_info
                .subst(data)
                .context("cannot substitute subject public key info")?,
            authority_key_identifier: self
                .authority_key_identifier
                .subst(data)
                .context("cannot substitute authority key id")?,
            subject_key_identifier: self
                .subject_key_identifier
                .subst(data)
                .context("cannot substitute subject key id")?,
            basic_constraints: self
                .basic_constraints
                .subst(data)
                .context("cannot substitute basic constraints")?,
            key_usage: self
                .key_usage
                .subst(data)
                .context("cannot substitute key usage")?,
            private_extensions: self
                .private_extensions
                .iter()
                .map(|ext| ext.subst(data))
                .collect::<Result<Vec<_>>>()
                .context("cannot substitute in extensions")?,
            signature: self
                .signature
                .subst(data)
                .context("cannot substitute signature")?,

            subject_alt_name: self
                .subject_alt_name
                .subst(data)
                .context("cannot substitute subject alt name")?,
        })
    }
}

impl Subst for BasicConstraints {
    fn subst(&self, data: &SubstData) -> Result<BasicConstraints> {
        Ok(BasicConstraints {
            ca: self.ca.subst(data)?,
        })
    }
}

impl Subst for CertificateExtension {
    fn subst(&self, data: &SubstData) -> Result<CertificateExtension> {
        match self {
            CertificateExtension::DiceTcbInfo(dice) => Ok(CertificateExtension::DiceTcbInfo(
                dice.subst(data)
                    .context("cannot substitute in DICE extension")?,
            )),
        }
    }
}

impl Subst for DiceTcbInfoExtension {
    fn subst(&self, data: &SubstData) -> Result<DiceTcbInfoExtension> {
        Ok(DiceTcbInfoExtension {
            model: self
                .model
                .subst(data)
                .context("cannot substitute DICE model")?,
            vendor: self
                .vendor
                .subst(data)
                .context("cannot substitute DICE vendor")?,
            version: self
                .version
                .subst(data)
                .context("cannot substitute DICE version")?,
            svn: self.svn.subst(data).context("cannot substitute DICE svn")?,
            layer: self
                .layer
                .subst(data)
                .context("cannot substitute DICE layer")?,
            fw_ids: self
                .fw_ids
                .subst(data)
                .context("cannot substitute DICE firmware ids")?,
            flags: self
                .flags
                .subst(data)
                .context("cannot substitute DICE flags")?,
        })
    }
}

impl Subst for FirmwareId {
    fn subst(&self, data: &SubstData) -> Result<FirmwareId> {
        Ok(FirmwareId {
            hash_algorithm: self.hash_algorithm,
            digest: self.digest.subst(data)?,
        })
    }
}

impl Subst for DiceTcbInfoFlags {
    fn subst(&self, data: &SubstData) -> Result<DiceTcbInfoFlags> {
        Ok(DiceTcbInfoFlags {
            not_configured: self
                .not_configured
                .subst(data)
                .context("cannot substitute not_configured flag")?,
            not_secure: self
                .not_secure
                .subst(data)
                .context("cannot substitute not_configured flag")?,
            recovery: self
                .recovery
                .subst(data)
                .context("cannot substitute not_configured flag")?,
            debug: self
                .debug
                .subst(data)
                .context("cannot substitute not_configured flag")?,
        })
    }
}

impl Subst for KeyUsage {
    fn subst(&self, data: &SubstData) -> Result<KeyUsage> {
        Ok(KeyUsage {
            digital_signature: self
                .digital_signature
                .subst(data)
                .context("cannot substitute digital signature key usage")?,
            key_agreement: self
                .key_agreement
                .subst(data)
                .context("cannot substitute key agreement")?,
            cert_sign: self
                .cert_sign
                .subst(data)
                .context("cannot substitute cert sign")?,
        })
    }
}

impl Subst for SubjectPublicKeyInfo {
    fn subst(&self, data: &SubstData) -> Result<SubjectPublicKeyInfo> {
        match self {
            SubjectPublicKeyInfo::EcPublicKey(ec) => {
                Ok(SubjectPublicKeyInfo::EcPublicKey(ec.subst(data)?))
            }
        }
    }
}

impl Subst for EcPublicKeyInfo {
    fn subst(&self, data: &SubstData) -> Result<EcPublicKeyInfo> {
        Ok(EcPublicKeyInfo {
            curve: self.curve.clone(),
            public_key: self.public_key.subst(data)?,
        })
    }
}

impl Subst for EcPublicKey {
    fn subst(&self, data: &SubstData) -> Result<EcPublicKey> {
        Ok(EcPublicKey {
            x: self.x.subst(data)?,
            y: self.y.subst(data)?,
        })
    }
}

impl Subst for Signature {
    fn subst(&self, data: &SubstData) -> Result<Signature> {
        match self {
            Signature::EcdsaWithSha256 { value } => Ok(Signature::EcdsaWithSha256 {
                value: value.subst(data)?,
            }),
        }
    }
}

impl Subst for EcdsaSignature {
    fn subst(&self, data: &SubstData) -> Result<EcdsaSignature> {
        Ok(EcdsaSignature {
            r: self.r.subst(data)?,
            s: self.s.subst(data)?,
        })
    }
}

impl<T> Subst for Option<T>
where
    T: Subst,
{
    fn subst(&self, data: &SubstData) -> Result<Option<T>> {
        self.as_ref().map(|x| x.subst(data)).transpose()
    }
}

impl<T> Subst for Vec<T>
where
    T: Subst,
{
    fn subst(&self, data: &SubstData) -> Result<Vec<T>> {
        self.iter()
            .map(|x| x.subst(data))
            .collect::<Result<Vec<_>>>()
    }
}

impl<K, V> Subst for IndexMap<K, V>
where
    K: Clone + Eq + std::hash::Hash,
    V: Subst,
{
    fn subst(&self, data: &SubstData) -> Result<IndexMap<K, V>> {
        self.iter()
            .map(|(k, v)| Ok((k.clone(), v.subst(data)?)))
            .collect::<Result<IndexMap<K, V>>>()
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    /// Test parsing of byte arrays.
    #[test]
    fn parse_byte_array() {
        let byte_array = SubstValue::ByteArray(vec![0xde, 0xad, 0xbe, 0xef]);
        // Size 0 means any size.
        assert_eq!(
            byte_array
                .parse(&VariableType::ByteArray { size: 0 })
                .unwrap(),
            byte_array
        );
        assert_eq!(
            byte_array
                .parse(&VariableType::ByteArray { size: 4 })
                .unwrap(),
            byte_array
        );
        assert!(byte_array
            .parse(&VariableType::ByteArray { size: 3 })
            .is_err());
        // Size must match exactly.
        assert!(byte_array
            .parse(&VariableType::ByteArray { size: 5 })
            .is_err());

        // Strings are interpreted as hexstrings.
        let byte_array_str = SubstValue::String("deadbeef".into());
        // Size 0 means any size.
        assert_eq!(
            byte_array_str
                .parse(&VariableType::ByteArray { size: 0 })
                .unwrap(),
            byte_array
        );
        assert_eq!(
            byte_array_str
                .parse(&VariableType::ByteArray { size: 4 })
                .unwrap(),
            byte_array
        );
        assert!(byte_array_str
            .parse(&VariableType::ByteArray { size: 3 })
            .is_err());
        // Size must match exactly.
        assert!(byte_array_str
            .parse(&VariableType::ByteArray { size: 5 })
            .is_err());
    }

    /// Test parsing of integers.
    #[test]
    fn parse_integers() {
        // Big-endian integer.
        let byte_array = SubstValue::ByteArray(vec![0x3f, 0x2e, 0x1d, 0x0c]);
        // Strings: hexdecimal and decimal.
        let byte_array_str_hex = SubstValue::String("0x3f2e1d0c".to_string());
        let byte_array_str_dec = SubstValue::String("1059986700".to_string());
        // Fixed-size integer.
        let byte_array_int = SubstValue::Int32(0x3f2e1d0c);

        for val in [
            &byte_array,
            &byte_array_int,
            &byte_array_str_hex,
            &byte_array_str_dec,
        ] {
            // Size 0 means any size.
            assert_eq!(
                val.parse(&VariableType::Integer { size: 0 }).unwrap(),
                byte_array
            );
            assert_eq!(
                val.parse(&VariableType::Integer { size: 4 }).unwrap(),
                byte_array
            );
            // Size does not need not match exactly.
            assert_eq!(
                val.parse(&VariableType::Integer { size: 5 }).unwrap(),
                byte_array
            );
            // Too small size in an error.
            assert!(val.parse(&VariableType::Integer { size: 3 }).is_err());
        }
    }

    /// Test parsing of strings.
    #[test]
    fn parse_strings() {
        // Big-endian integer.
        let s = SubstValue::String("OpenTitan".into());
        // Size 0 means any size.
        assert_eq!(s.parse(&VariableType::String { size: 0 }).unwrap(), s);
        assert_eq!(s.parse(&VariableType::String { size: 9 }).unwrap(), s);
        // A shorting string than specified is acceptable.
        assert_eq!(s.parse(&VariableType::String { size: 10 }).unwrap(), s);
        assert!(s.parse(&VariableType::String { size: 8 }).is_err());
    }

    /// Test parsing of booleans.
    #[test]
    fn parse_booleans() {
        for b in [false, true] {
            let b_val = SubstValue::Boolean(b);
            assert_eq!(b_val.parse(&VariableType::Boolean).unwrap(), b_val);
            let b_str = SubstValue::String(format!("{b}"));
            assert_eq!(b_str.parse(&VariableType::Boolean).unwrap(), b_val);
        }
    }

    /// Test conversion to byte arrays.
    #[test]
    fn convert_to_byte_array() {
        // Parsing is already tested so we only need to test conversion *after* parsing.

        // The only valid conversion from a byte array to a byte array is None.
        let byte_array = vec![0xde, 0xad, 0xbe, 0xef, 0x13, 0x24, 0x35];
        let array_val = SubstValue::ByteArray(byte_array.clone());
        let conv_none: Result<Vec<u8>> = array_val.convert(&None);
        let conv_lowercase: Result<Vec<u8>> = array_val.convert(&Some(Conversion::LowercaseHex));
        let conv_bigendian: Result<Vec<u8>> = array_val.convert(&Some(Conversion::BigEndian));

        assert_eq!(conv_none.unwrap(), byte_array);
        assert!(conv_lowercase.is_err());
        assert!(conv_bigendian.is_err());
        // There are no valid conversions from any other type to a byte array.
    }

    /// Test conversion to strings.
    #[test]
    fn convert_to_string() {
        // The only valid conversion from a string to a string is None.
        let s = "OpenTitan".to_string();
        let s_val = SubstValue::String(s.clone());
        let conv_none: Result<String> = s_val.convert(&None);
        let conv_lowercase: Result<String> = s_val.convert(&Some(Conversion::LowercaseHex));
        let conv_bigendian: Result<String> = s_val.convert(&Some(Conversion::BigEndian));

        assert_eq!(conv_none.unwrap(), s);
        assert!(conv_lowercase.is_err());
        assert!(conv_bigendian.is_err());

        // It is possible to convert a byte array to string (which gives the corresponding hexstring).
        // Explicitly check that the hexstring produces two characters per byte with '0' padding.
        let byte_array = vec![0x0e, 0xad, 0xbe, 0xef, 0x13, 0x24, 0x35];
        let array_hexstr = "0eadbeef132435".to_string();
        let array_val = SubstValue::ByteArray(byte_array);
        let conv_none: Result<String> = array_val.convert(&None);
        let conv_lowercase: Result<String> = array_val.convert(&Some(Conversion::LowercaseHex));
        let conv_bigendian: Result<String> = array_val.convert(&Some(Conversion::BigEndian));

        assert!(conv_none.is_err());
        assert_eq!(conv_lowercase.unwrap(), array_hexstr);
        assert!(conv_bigendian.is_err());
    }

    /// Test conversion to integers.
    #[test]
    fn convert_to_integer() {
        // Parsing is already tested so we only need to test conversion *after* parsing.

        // The only valid conversion to an integer is from a byte array using either None or big-endian.
        let byte_array = vec![0xde, 0xad, 0xbe, 0xef, 0x13, 0x24, 0x35];
        let array_val = SubstValue::ByteArray(byte_array.clone());
        let array_int = BigUint::from_bytes_be(&byte_array);
        let conv_none: Result<BigUint> = array_val.convert(&None);
        let conv_lowercase: Result<BigUint> = array_val.convert(&Some(Conversion::LowercaseHex));
        let conv_bigendian: Result<BigUint> = array_val.convert(&Some(Conversion::BigEndian));

        assert_eq!(conv_none.unwrap(), array_int);
        assert!(conv_lowercase.is_err());
        assert_eq!(conv_bigendian.unwrap(), array_int);
    }

    /// Test conversion to booleans.
    #[test]
    fn convert_to_boolean() {
        // The only valid conversion from a boolean to a boolean is None.
        let b = false;
        let b_val = SubstValue::Boolean(b);
        let conv_none: Result<bool> = b_val.convert(&None);
        let conv_lowercase: Result<bool> = b_val.convert(&Some(Conversion::LowercaseHex));
        let conv_bigendian: Result<bool> = b_val.convert(&Some(Conversion::BigEndian));

        assert_eq!(conv_none.unwrap(), b);
        assert!(conv_lowercase.is_err());
        assert!(conv_bigendian.is_err());
    }
}