ot_certs/
cwt.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
// Copyright lowRISC contributors (OpenTitan project).
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0

use std::collections::HashMap;
use std::fs;
use std::iter;
use std::path::PathBuf;

use crate::cbor;
use crate::codegen::Codegen;
use anyhow::{bail, Context, Result};
use heck::{ToShoutySnakeCase, ToUpperCamelCase};
use indexmap::IndexMap;
use itertools::Itertools;
use serde::{Deserialize, Serialize};

#[derive(Clone, Debug, Deserialize, PartialEq, Eq, Serialize)]
#[serde(deny_unknown_fields)]
pub struct CwtTemplate {
    /// Name of the certificate.
    pub name: String,
    /// Variable declarations.
    pub variables: IndexMap<String, TemplateVariable>,
    /// Constant declarations.
    pub constants: IndexMap<String, TemplateConstant>,
    /// Structure specification.
    pub structure: TemplateStructure,
}

#[derive(Clone, Copy, Debug, Deserialize, PartialEq, Eq, Serialize)]
#[serde(rename_all = "kebab-case")]
pub enum VariableSize {
    /// The maximum size of the variable.
    MaxSize(u64),
    /// The exact size of the variable.
    ExactSize(u64),
}

#[derive(Clone, Copy, Debug, PartialEq, Eq, Deserialize, Serialize)]
#[serde(rename_all = "kebab-case")]
pub enum VariableType {
    /// Raw array of bytes.
    ByteArray,
    /// UTF-8 encoded string.
    String,
    /// Signed 64-bit integer.
    Integer,
}

/// Used to parse the variables defined in the template.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Deserialize, Serialize)]
#[serde(tag = "type", rename_all = "kebab-case")]
pub enum TemplateVariable {
    /// Byte-array variable.
    ByteArray {
        #[serde(flatten)]
        size: VariableSize,
    },
    /// String variable.
    String {
        #[serde(flatten)]
        size: VariableSize,
    },
    /// Integer variable.
    Integer,
}

/// Used to parse the constants defined in the template.
#[derive(Clone, Debug, PartialEq, Eq, Deserialize, Serialize)]
#[serde(tag = "type", rename_all = "kebab-case")]
pub enum TemplateConstant {
    /// Byte-array constant.
    ByteArray {
        /// Big-endian hex-encoded bytes
        #[serde(with = "hex::serde")]
        value: Vec<u8>,
    },
    /// String constant.
    String { value: String },
    /// Integer constant.
    Integer { value: i64 },
}

/// Used to parse the structures defined in the template.
#[derive(Clone, Debug, PartialEq, Eq, Deserialize, Serialize)]
#[serde(untagged)]
pub enum TemplateStructure {
    /// A byte-array which encodes a CBOR structure.
    #[serde(rename_all = "kebab-case")]
    CborByteArray {
        cbor_byte_array: Box<TemplateStructure>,
    },
    /// An item is a variable or a constant.
    Item(String),
    /// A map that consists of key-value pairs.
    Map(IndexMap<String, TemplateStructure>),
    /// An array that consists of values.
    Array(Vec<TemplateStructure>),
}

// CodegenVar is used to unify the representation of TemplateVariable and TemplateConstant.
#[derive(Clone, Debug, PartialEq, Eq, Deserialize, Serialize)]
struct CodegenVar {
    name: String,
    size: VariableSize,
    value: CodegenVarValue,
}

type CodegenVarTable = HashMap<String, CodegenVar>;

#[derive(Clone, Debug, PartialEq, Eq, Deserialize, Serialize)]
enum CodegenVarValue {
    ByteArray(Option<Vec<u8>>),
    String(Option<String>),
    Integer(Option<i64>),
}

impl CodegenVar {
    fn from_template_variable(name: &str, var: &TemplateVariable) -> Result<Self> {
        let name = name.to_owned();
        let (size, value) = match var {
            TemplateVariable::ByteArray { size } => (*size, CodegenVarValue::ByteArray(None)),
            TemplateVariable::String { size } => (*size, CodegenVarValue::String(None)),
            TemplateVariable::Integer => (VariableSize::MaxSize(8), CodegenVarValue::Integer(None)),
        };

        Ok(Self { name, size, value })
    }

    fn from_template_constant(name: &str, var: &TemplateConstant) -> Result<Self> {
        let name = name.to_owned();
        let (value, size) = match var {
            TemplateConstant::ByteArray { value } => (
                CodegenVarValue::ByteArray(Some(value.clone())),
                VariableSize::ExactSize(value.len().try_into().with_context(|| {
                    format!("the size of {name} is too large for u64: {}", value.len())
                })?),
            ),
            TemplateConstant::String { value } => (
                CodegenVarValue::String(Some(value.clone())),
                VariableSize::ExactSize(value.len().try_into().with_context(|| {
                    format!("the size of {name} is too large for u64: {}", value.len())
                })?),
            ),
            TemplateConstant::Integer { value } => {
                let arg = if *value >= 0 { *value } else { -(*value + 1) } as u64;
                (
                    CodegenVarValue::Integer(Some(*value)),
                    VariableSize::ExactSize(cbor::arg_size(arg).0),
                )
            }
        };

        Ok(Self { name, size, value })
    }

    fn is_constant(&self) -> bool {
        match &self.value {
            CodegenVarValue::ByteArray(v) => v.is_some(),
            CodegenVarValue::String(v) => v.is_some(),
            CodegenVarValue::Integer(v) => v.is_some(),
        }
    }

    fn variable_type(&self) -> VariableType {
        match &self.value {
            CodegenVarValue::ByteArray(_) => VariableType::ByteArray,
            CodegenVarValue::String(_) => VariableType::String,
            CodegenVarValue::Integer(_) => VariableType::Integer,
        }
    }

    // Generate the input fields.
    fn declarations(&self, prefix: &str) -> String {
        assert!(!self.is_constant());

        match self.value {
            CodegenVarValue::ByteArray(_) => {
                indoc::formatdoc! { r#"
                    {prefix}uint8_t *{name};
                    {prefix}size_t {name}_size;
                    "#,
                    name = self.name
                }
            }
            CodegenVarValue::String(_) => {
                indoc::formatdoc! { r#"
                    {prefix}char *{name};
                    {prefix}size_t {name}_size;
                    "#,
                    name = self.name
                }
            }
            CodegenVarValue::Integer(_) => indoc::formatdoc! { r#"
                {prefix}int64_t {name};
                "#,
                name = self.name
            },
        }
    }

    // Generate the expression of the value.
    fn value_expression(&self) -> String {
        assert!(!self.is_constant());
        format!("values->{}", self.name)
    }

    // Generate the expression of the value size.
    fn size_expression(&self) -> String {
        assert!(!self.is_constant());
        if self.variable_type() != VariableType::Integer {
            format!("values->{}_size", self.name)
        } else {
            format!("cbor_calc_int_size(values->{})", self.name)
        }
    }
}

// CodegenStructure are stored inside a vector, and therefore we use indices to refer to other CodegenStructure.
// `Var` represents a leaf node, while others represent different types of internal nodes.
#[derive(Clone, Debug, PartialEq, Eq)]
enum CodegenStructure<'a> {
    Var(&'a CodegenVar),
    CborByteArray(usize),
    Map(Vec<(usize, usize)>),
    Array(Vec<usize>),
}

impl CodegenStructure<'_> {
    fn from_template<'a>(
        template: &CwtTemplate,
        vars: &'a CodegenVarTable,
    ) -> Result<Vec<CodegenStructure<'a>>> {
        let mut nodes = Vec::<CodegenStructure>::new();
        let mut id_mapping = HashMap::<String, usize>::new();
        Self::build_codegen_structure(&template.structure, vars, &mut nodes, &mut id_mapping)
            .context("build_codegen_structure failed")?;
        Ok(nodes)
    }

    // Assign the indices in postorder.
    // For later size computations, we could just iterate the array without DFS,
    // because child nodes are always processed before their parent node.
    fn build_codegen_structure<'a>(
        cur: &TemplateStructure,
        vars: &'a CodegenVarTable,
        nodes: &mut Vec<CodegenStructure<'a>>,
        var_ids: &mut HashMap<String, usize>,
    ) -> Result<usize> {
        let node = match cur {
            TemplateStructure::Item(name) => {
                let var = vars
                    .get(name)
                    .with_context(|| format!("cannot find item {name} in template"))?;
                CodegenStructure::Var(var)
            }
            TemplateStructure::CborByteArray { cbor_byte_array } => {
                let inner = Self::build_codegen_structure(cbor_byte_array, vars, nodes, var_ids)?;
                CodegenStructure::CborByteArray(inner)
            }
            TemplateStructure::Map(items) => {
                let mut pairs = Vec::new();
                for (k, v) in items {
                    let item = TemplateStructure::Item(k.clone());
                    let first = Self::build_codegen_structure(&item, vars, nodes, var_ids)?;
                    let second = Self::build_codegen_structure(v, vars, nodes, var_ids)?;
                    pairs.push((first, second));
                }
                CodegenStructure::Map(pairs)
            }
            TemplateStructure::Array(items) => {
                let mut values = Vec::new();
                for item in items {
                    let value = Self::build_codegen_structure(item, vars, nodes, var_ids)?;
                    values.push(value);
                }
                CodegenStructure::Array(values)
            }
        };

        if let CodegenStructure::Var(var) = node {
            // Check if the node for this Var is created before.
            if var_ids.contains_key(&var.name) {
                // If so, just get its id and return.
                // This means that if a variable or a constant is used multiple times,
                // there will be exactly one node to represent it.
                Ok(var_ids[&var.name])
            } else {
                // Otherwise, create a new node, store its id in `var_ids` and return.
                let idx = nodes.len();
                nodes.push(node);
                var_ids.insert(var.name.clone(), idx);
                Ok(idx)
            }
        } else {
            // Always create a new node for it and return.
            let idx = nodes.len();
            nodes.push(node);
            Ok(idx)
        }
    }
}

// A CBOR data item (called `item` in the source code) consists of the following parts:
//
//   * major type (3 bit): the type of this data item
//
//   * additional information (5 bit): the information of `argument`
//
//   * argument: different meaning for different type
//
//               could be omitted if less than 24,
//               `additional information` will hold the actual value in this case
//
//   * content: the content of the data type
//
//
// |--------------------------------------------------------------|
// | major type | additional information | argument |   content   |
// |--------------------------------------------------------------|
//
// |-------------------------------------|
//                 1 byte
//                                       |----------|
//                                         arg_size
//                                                  |-------------|
//                                                   content_size
// |--------------------------------------------------------------|
//                            item_size
//
//
// Since we have CodegenStructure::CborByteArray, and there might be variables in the inner nodes,
// we need to compute the size of the whole inner structure before generating its CBOR.
//
// We define `content_size`, `arg_size` and `item_size` for each CodegenStructure,
// and represent them in `SizeExpression`.
//
// When the size of a given child item is known before runtime, it will be accumulated into the `constant` field.
// Otherwise, we could only know the exact size until runtime, and therefore we mark it in dependencies.
//
//
// The formulations are:
//
//   `content_size` = constant + `item_size`` of each dependent CodegenStructure, or
//                    constant + size expression of the CodegenVar
//
//   `item_size` = 1 + ArgSize::Constant + `content_size` or
//                 1 + encoded size of `content_size` + `content_size`
//
#[derive(Clone, Debug, PartialEq, Eq)]
struct SizeExpression<'a> {
    index: usize,
    arg_size: ArgSize,
    constant: u64,
    dependencies: SizeDependency<'a>,
}

#[derive(Clone, Debug, PartialEq, Eq)]
enum ArgSize {
    // Fixed size.
    Constant(u64),
    // Used for data types whose `argument` is its `content_size`.
    LengthOfContentSize,
}

#[derive(Clone, Debug, PartialEq, Eq)]
enum SizeDependency<'a> {
    Var(&'a CodegenVar),
    SubItemSize(Vec<usize>),
}

impl SizeExpression<'_> {
    // Return a SizeExpression whose `content_size` depends on a variable.
    fn from_codegenvar(index: usize, arg_size: ArgSize, var: &CodegenVar) -> SizeExpression<'_> {
        SizeExpression {
            index,
            arg_size,
            constant: 0,
            dependencies: SizeDependency::Var(var),
        }
    }

    // Return a SizeExpression with empty SubItemSize dependency.
    fn empty_dependency(index: usize, arg_size: ArgSize, constant: u64) -> Self {
        SizeExpression {
            index,
            arg_size,
            constant,
            dependencies: SizeDependency::SubItemSize(vec![]),
        }
    }

    fn add_constant(&mut self, constant: u64) {
        self.constant += constant;
    }

    fn add_dependency(&mut self, index: usize) {
        if let SizeDependency::SubItemSize(deps) = &mut self.dependencies {
            deps.push(index);
        } else {
            panic!("add_dependency should be only called on SizeExpression with SubItemSize dependency.")
        }
    }

    fn is_constant(&self) -> bool {
        match &self.dependencies {
            SizeDependency::Var(_) => false,
            SizeDependency::SubItemSize(items) => items.is_empty(),
        }
    }

    fn content_size(&self) -> u64 {
        assert!(self.is_constant());
        self.constant
    }

    fn item_size(&self) -> u64 {
        assert!(self.is_constant());
        match self.arg_size {
            ArgSize::Constant(arg) => 1 + arg + self.constant,
            ArgSize::LengthOfContentSize => 1 + cbor::arg_size(self.constant).0 + self.constant,
        }
    }

    // Generate the expression to compute `content_size`.
    fn content_size_expression(&self) -> String {
        let mut terms = Vec::new();

        if self.constant > 0 {
            terms.push(self.constant.to_string());
        }

        match &self.dependencies {
            SizeDependency::Var(var) => terms.push(var.size_expression()),
            SizeDependency::SubItemSize(items) => {
                terms.extend(items.iter().map(|idx| format!("item_size_{idx}")))
            }
        };

        terms.join(" + ")
    }

    // Generate the expression to compute `item_size`.
    // If not a constant, the result expression will always depend on its `content_size`.
    fn item_size_expression(&self) -> String {
        if self.is_constant() {
            self.item_size().to_string()
        } else {
            match &self.arg_size {
                ArgSize::Constant(arg) => {
                    format!("{k} + content_size_{idx}", k = 1 + arg, idx = self.index)
                }
                ArgSize::LengthOfContentSize => format!(
                    "1 + cbor_calc_arg_size(content_size_{idx}) + content_size_{idx}",
                    idx = self.index
                ),
            }
        }
    }
}

// Derive the size expression of each CodegenStructure.
//
// `get_var_size` is used to query the exact size of CodegenVar.
// If the return value is None, it means that the size can't be determined until runtime.
//
// The reason to make this function as a parameter is that we currently have two scenarios:
//
//   1. get the exact size to generate the size computation code
//
//      `get_var_size` only returns a value when the size is exact.
//
//   2. get the maximum size of this structure
//
//      `get_var_size` always returns the maximum size.
fn derive_size_expressions<'a>(
    nodes: &'a [CodegenStructure],
    get_var_size: &impl Fn(&CodegenVar) -> Option<u64>,
) -> Result<Vec<SizeExpression<'a>>> {
    let mut exps = Vec::<SizeExpression>::new();

    // The items in the slice are alreay sorted in postorder.
    for (idx, node) in nodes.iter().enumerate() {
        // A helper function to generate a size expression from CodegenVar.
        let from_var = |arg_size, var| {
            if let Some(size) = get_var_size(var) {
                SizeExpression::empty_dependency(idx, arg_size, size)
            } else {
                SizeExpression::from_codegenvar(idx, arg_size, var)
            }
        };

        // A helper function to generate a size expression from dependent items.
        let from_deps = |arg_size, idxs: &mut dyn Iterator<Item = &usize>| {
            let mut exp = SizeExpression::empty_dependency(idx, arg_size, 0);
            for idx in idxs {
                let dep = &exps[*idx];
                if dep.is_constant() {
                    exp.add_constant(dep.item_size());
                } else {
                    exp.add_dependency(*idx);
                }
            }
            exp
        };

        let exp = match node {
            CodegenStructure::Var(var) => match var.variable_type() {
                VariableType::ByteArray => from_var(ArgSize::LengthOfContentSize, var),
                VariableType::String => from_var(ArgSize::LengthOfContentSize, var),
                VariableType::Integer => from_var(ArgSize::Constant(0), var),
            },
            CodegenStructure::CborByteArray(inner) => {
                from_deps(ArgSize::LengthOfContentSize, &mut iter::once(inner))
            }
            CodegenStructure::Map(items) => {
                let len = items.len().try_into().with_context(|| {
                    format!("the size of the map is too large for u64: {}", items.len())
                })?;
                from_deps(
                    ArgSize::Constant(cbor::arg_size(len).0),
                    &mut items.iter().flat_map(|(a, b)| [a, b]),
                )
            }
            CodegenStructure::Array(items) => {
                let len = items.len().try_into().with_context(|| {
                    format!(
                        "the size of the array is too large for u64: {}",
                        items.len()
                    )
                })?;
                from_deps(ArgSize::Constant(cbor::arg_size(len).0), &mut items.iter())
            }
        };

        exps.push(exp);
    }

    Ok(exps)
}

fn collect_codegenvar(template: &CwtTemplate) -> Result<CodegenVarTable> {
    let mut vars = HashMap::<String, CodegenVar>::new();

    for (name, var) in &template.variables {
        let ret = vars.insert(name.clone(), CodegenVar::from_template_variable(name, var)?);
        if ret.is_some() {
            bail!("A variable name {} already exists", name);
        }
    }

    for (name, var) in &template.constants {
        let ret = vars.insert(name.clone(), CodegenVar::from_template_constant(name, var)?);
        if ret.is_some() {
            bail!("A constant name {} already exists", name);
        }
    }

    Ok(vars)
}

// Generate the data members of the input structure.
fn generate_input_fields(vars: &CodegenVarTable, indent: &str) -> String {
    vars.iter()
        .filter(|(_, var)| !var.is_constant())
        .map(|(_, var)| var.declarations(indent))
        .collect()
}

// Generate the size computation code for each item whose size can't be determined until runtime.
fn generate_size_computations(size_exps: &[SizeExpression], prefix: &str) -> Result<String> {
    assert!(!size_exps.is_empty());

    let mut code = String::new();
    for size_exp in size_exps.iter().filter(|exp| !exp.is_constant()) {
        code += &format!(
            "{prefix}const size_t content_size_{} = {};\n",
            size_exp.index,
            size_exp.content_size_expression()
        );
        code += &format!(
            "{prefix}const size_t item_size_{} = {};\n",
            size_exp.index,
            size_exp.item_size_expression()
        );
    }

    Ok(code)
}

// Generate the code to check the sizes of input arguments.
// The first return value is used to check all input sizes.
// The second return value is used to check the final output size.
fn generate_size_checks(
    vars: &CodegenVarTable,
    whole_struct_size: &SizeExpression,
    prefix: &str,
) -> Result<(String, String)> {
    let mut input_checks = String::new();

    // Check the size of each input variable.
    for (_, var) in vars
        .iter()
        .filter(|(_, var)| !var.is_constant() && var.variable_type() != VariableType::Integer)
    {
        let size_exp = var.size_expression();
        let cond = match var.size {
            VariableSize::ExactSize(size) => format!("!= {size}"),
            VariableSize::MaxSize(size) => format!("> {size}"),
        };

        input_checks +=
            &format!("{prefix}if ({size_exp} {cond}) return kErrorCertInvalidArgument;\n");
    }

    let size_bound = if whole_struct_size.is_constant() {
        whole_struct_size.item_size().to_string()
    } else {
        format!("item_size_{idx}", idx = whole_struct_size.index)
    };

    // Check the input buffer size.
    input_checks +=
        &format!("{prefix}if (*inout_size < {size_bound}) return kErrorCertInvalidSize;\n");

    // Make sure that the output size is the same as calculated root `item_size`.
    let output_checks =
        format!("{prefix}if (*inout_size != {size_bound}) return kErrorCertInternal;\n");

    Ok((input_checks, output_checks))
}

fn collect_preorder_indicies_helper(nodes: &[CodegenStructure], root: usize, res: &mut Vec<usize>) {
    res.push(root);
    match &nodes[root] {
        CodegenStructure::Var(_) => {}
        CodegenStructure::CborByteArray(inner) => {
            collect_preorder_indicies_helper(nodes, *inner, res);
        }
        CodegenStructure::Map(items) => {
            for (k, v) in items {
                collect_preorder_indicies_helper(nodes, *k, res);
                collect_preorder_indicies_helper(nodes, *v, res);
            }
        }
        CodegenStructure::Array(items) => {
            for item in items {
                collect_preorder_indicies_helper(nodes, *item, res);
            }
        }
    }
}

fn collect_preorder_indicies(nodes: &[CodegenStructure]) -> Vec<usize> {
    let mut res = Vec::new();
    collect_preorder_indicies_helper(nodes, nodes.len() - 1, &mut res);
    res
}

// Each CodegenStructure maps to a CodeBlock.
type CodeBlock = Vec<GeneratedCode>;

#[derive(Clone, Debug, PartialEq, Eq)]
enum GeneratedCode {
    // A single CBOR-function call.
    FunctionCall(String),
    // If all the arguments are constants, derive its resulting bytes directly.
    CborBytes(Vec<u8>),
}

struct GeneratedCborInstructions {
    constant_definitions: String,
    cbor_instructions: String,
}

fn generate_cbor_instructions(
    nodes: &[CodegenStructure],
    size_exps: &[SizeExpression],
    prefix: &str,
) -> Result<GeneratedCborInstructions> {
    assert!(nodes.len() == size_exps.len());

    let call_wrapper = |func_call: String| {
        indoc::formatdoc! { r#"
            {prefix}RETURN_IF_ERROR({func_call});
            "#
        }
    };

    let gen_inst = |inst: String| GeneratedCode::FunctionCall(call_wrapper(inst));

    // For each CodegenStructure, generate its CodeBlock first.
    let mut code_blocks = Vec::<CodeBlock>::new();
    for (idx, (node, size_exp)) in nodes.iter().zip(size_exps.iter()).enumerate() {
        let code_block = match node {
            CodegenStructure::Var(var) => match &var.value {
                CodegenVarValue::ByteArray(val) => {
                    let header = if let VariableSize::ExactSize(size) = var.size {
                        GeneratedCode::CborBytes(cbor::byte_array_header(size))
                    } else {
                        gen_inst(format!("cbor_write_bstr_header(&cbor, content_size_{idx})"))
                    };

                    let content = if let Some(constant) = val {
                        GeneratedCode::CborBytes(constant.clone())
                    } else {
                        let val = var.value_expression();
                        let size = var.size_expression();
                        gen_inst(format!("cbor_write_raw_bytes(&cbor, {val}, {size})"))
                    };

                    vec![header, content]
                }
                CodegenVarValue::String(val) => {
                    let header = if let VariableSize::ExactSize(size) = var.size {
                        GeneratedCode::CborBytes(cbor::string_header(size))
                    } else {
                        gen_inst(format!("cbor_write_tstr_header(&cbor, content_size_{idx})"))
                    };

                    let content = if let Some(constant) = val {
                        GeneratedCode::CborBytes(constant.as_bytes().to_vec())
                    } else {
                        let val = var.value_expression();
                        let size = var.size_expression();
                        gen_inst(format!(
                            "cbor_write_raw_bytes(&cbor, (uint8_t *){val}, {size})"
                        ))
                    };

                    vec![header, content]
                }
                CodegenVarValue::Integer(val) => match val {
                    Some(constant) => {
                        vec![GeneratedCode::CborBytes(cbor::int(*constant))]
                    }
                    None => {
                        let val = var.value_expression();
                        vec![gen_inst(format!("cbor_write_int(&cbor, {val})"))]
                    }
                },
            },
            CodegenStructure::CborByteArray(_) => {
                if size_exp.is_constant() {
                    let size = size_exp.content_size();
                    vec![GeneratedCode::CborBytes(cbor::byte_array_header(size))]
                } else {
                    vec![gen_inst(format!(
                        "cbor_write_bstr_header(&cbor, content_size_{idx})"
                    ))]
                }
            }
            CodegenStructure::Map(items) => {
                let len = items.len().try_into().with_context(|| {
                    format!("the size of the map is too large for u64: {}", items.len())
                })?;
                vec![GeneratedCode::CborBytes(cbor::map_header(len))]
            }
            CodegenStructure::Array(items) => {
                let len = items.len().try_into().with_context(|| {
                    format!(
                        "the size of the array is too large for u64: {}",
                        items.len()
                    )
                })?;
                vec![GeneratedCode::CborBytes(cbor::array_header(len))]
            }
        };

        code_blocks.push(code_block);
    }

    // Collect the code blocks, and then linearize them into a sequence of single operations.
    let order = collect_preorder_indicies(nodes);
    let insts = order.iter().flat_map(|&idx| code_blocks[idx].clone());

    let mut constant_definitions = String::new();
    let mut cbor_instructions = String::new();

    // For neighboring CBOR, we collect them into a single array and write them at once.
    let mut idx = 0usize;
    for (is_constant, chunk) in &insts.chunk_by(|inst| matches!(inst, GeneratedCode::CborBytes(_)))
    {
        if is_constant {
            let buf = chunk.flat_map(|inst| match inst {
                GeneratedCode::CborBytes(inner) => inner,
                _ => panic!("Shouldn't have any non GeneratedCode::CborBytes variant."),
            });

            let bytes = buf.map(|ch| format!("{}", ch));
            let initializer: String =
                itertools::Itertools::intersperse(bytes, ", ".to_owned()).collect();

            constant_definitions += &indoc::formatdoc! { r#"
                {prefix}const static uint8_t binary_{idx}[] = {{{initializer}}};
                "#};
            cbor_instructions += &call_wrapper(format!(
                "cbor_write_raw_bytes(&cbor, binary_{idx}, sizeof(binary_{idx}))"
            ));

            idx += 1;
        } else {
            for block in chunk {
                match block {
                    GeneratedCode::FunctionCall(inner) => cbor_instructions += &inner,
                    _ => panic!("Shouldn't have any non GeneratedCode::FunctionCall variant."),
                }
            }
        }
    }

    Ok(GeneratedCborInstructions {
        constant_definitions,
        cbor_instructions,
    })
}

fn generate_header(from_file: &str, template_name: &str, max_size: u64, decls: String) -> String {
    let preproc_guard_include = template_name.to_shouty_snake_case();
    let enum_name = template_name.to_upper_camel_case();

    indoc::formatdoc! { r#"
        // Copyright lowRISC contributors (OpenTitan project).
        // Licensed under the Apache License, Version 2.0, see LICENSE for details.
        // SPDX-License-Identifier: Apache-2.0

        // This file was automatically generated using opentitantool from:
        // {from_file}
        #ifndef __{preproc_guard_include}__
        #define __{preproc_guard_include}__

        #include "sw/device/lib/base/status.h"

        typedef struct {template_name}_values {{
        {decls}}} {template_name}_values_t;

        enum {{
          k{enum_name}MaxVariableSizeBytes = {max_size},
        }};

        rom_error_t {template_name}_build({template_name}_values_t *values, uint8_t *output, size_t *inout_size);

        #endif
    "#}
}

fn generate_source(
    from_file: &str,
    template_name: &str,
    constant_definitions: &str,
    size_computations: &str,
    input_size_checks: &str,
    output_size_checks: &str,
    cbor_instructions: &str,
) -> String {
    let source_template = indoc::formatdoc! { r#"
        // Copyright lowRISC contributors (OpenTitan project).
        // Licensed under the Apache License, Version 2.0, see LICENSE for details.
        // SPDX-License-Identifier: Apache-2.0

        // This file was automatically generated using opentitantool from:
        // {from_file}

        #include "{template_name}.h"
        #include "sw/device/silicon_creator/lib/cert/cbor.h"

        {constant_definitions}
        rom_error_t {template_name}_build({template_name}_values_t *values, uint8_t *buffer, size_t *inout_size) {{
        {size_computations}
        {input_size_checks}
          struct CborOut cbor;
          RETURN_IF_ERROR(cbor_write_out_init(&cbor, buffer, *inout_size));

        {cbor_instructions}
          *inout_size = CborOutSize(&cbor);
        {output_size_checks}
          return kErrorOk;
        }}
    "#};

    source_template
}

impl CwtTemplate {
    pub fn from_hjson_str(content: &str) -> Result<CwtTemplate> {
        deser_hjson::from_str(content).context("CwtTemplate::from_hjson_str failed")
    }
}

pub fn load_cwt_template(path: &PathBuf) -> Result<CwtTemplate> {
    let template_content = fs::read_to_string(path)
        .with_context(|| format!("could not load the template file {}", path.display()))?;

    CwtTemplate::from_hjson_str(&template_content).with_context(|| {
        format!(
            "failed to parse CwtTemplate from the template file {}",
            path.display()
        )
    })
}

pub fn generate_cert(from_file: &str, template: &CwtTemplate) -> Result<Codegen> {
    let vars = collect_codegenvar(template).context("collect_codegenvar failed")?;

    let structures = CodegenStructure::from_template(template, &vars)
        .context("CodegenStructure::from_template failed")?;

    let max_size = {
        let exp = derive_size_expressions(&structures, &|var| match var.size {
            VariableSize::ExactSize(size) => Some(size),
            VariableSize::MaxSize(size) => Some(size),
        })
        .context("derive_size_expressions for maximum size failed")?;

        exp.last()
            .context("there isn't any item in the structure")?
            .item_size()
    };

    let decls = generate_input_fields(&vars, "  ");

    let source_h = generate_header(from_file, &template.name, max_size, decls);

    let exact_sizes = derive_size_expressions(&structures, &|var| match var.size {
        VariableSize::ExactSize(size) => Some(size),
        _ => None,
    })
    .context("derive_size_expressions for exact size failed")?;

    let size_computations = generate_size_computations(&exact_sizes, "  ")
        .context("generate_size_computations failed")?;

    let (input_size_checks, output_size_checks) = generate_size_checks(
        &vars,
        exact_sizes
            .last()
            .context("there isn't any item in the structure")?,
        "  ",
    )
    .context("generate_size_checks failed")?;

    let GeneratedCborInstructions {
        constant_definitions,
        cbor_instructions,
    } = generate_cbor_instructions(&structures, &exact_sizes, "  ")
        .context("generate_cbor_instructions failed")?;

    let source_c = generate_source(
        from_file,
        &template.name,
        &constant_definitions,
        &size_computations,
        &input_size_checks,
        &output_size_checks,
        &cbor_instructions,
    );

    // TODO: finish the unittest
    let source_unittest = String::new();

    Ok(Codegen {
        source_h,
        source_c,
        source_unittest,
    })
}