1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
// Copyright lowRISC contributors (OpenTitan project).
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
use anyhow::{bail, ensure, Result};
use heck::{ToSnakeCase, ToUpperCamelCase};
use indexmap::IndexMap;
use num_bigint_dig::BigUint;
use crate::asn1::builder::Builder;
use crate::asn1::{Oid, Tag};
use crate::template::{Conversion, Value, Variable, VariableType};
struct ConstantEntry {
var_name: String,
c_decl: String,
}
/// Constant pool for code generation.
#[derive(Default)]
pub struct ConstantPool {
constants: IndexMap<Vec<u8>, ConstantEntry>,
}
impl ConstantPool {
pub fn new() -> ConstantPool {
ConstantPool {
constants: IndexMap::new(),
}
}
pub fn codestring(&self) -> String {
self.constants
.values()
.map(|x| x.c_decl.clone())
.collect::<Vec<_>>()
.join("")
}
pub fn get_var_name(&self, data: &Vec<u8>) -> Option<String> {
self.constants.get(data).map(|ent| ent.var_name.clone())
}
pub fn add_entry(&mut self, data: Vec<u8>, var_name: String, c_decl: String) {
self.constants
.insert(data, ConstantEntry { var_name, c_decl });
}
}
/// Information about how to refer to a variable in the code.
#[derive(Debug, Clone)]
pub enum VariableCodegenInfo {
/// Variable can be referred to as a pointer.
Pointer {
// Expression generating the pointer.
ptr_expr: String,
// Expression generating the size.
size_expr: String,
},
/// Variable is an integer.
Int32 {
// Expression generating the value.
value_expr: String,
},
/// Variable is a boolean,
Boolean {
// Expression generating the value.
value_expr: String,
},
}
/// Information about a variable.
#[derive(Debug, Clone)]
pub struct VariableInfo {
/// Type of the variable.
pub var_type: VariableType,
/// How to refer to the variable.
pub codegen: VariableCodegenInfo,
}
/// ASN1 code generator.
pub struct Codegen<'a> {
/// Output buffer.
output: String,
/// Constant pool.
constants: &'a mut ConstantPool,
/// Indentation string.
indent: String,
/// Current indentation level.
indent_lvl: usize,
/// Variable types: return information about a variable by name.
variable_info: &'a dyn Fn(&str) -> Result<VariableInfo>,
/// Index of next tag (to guarantee unique names).
tag_idx: usize,
/// Maximum size of the output.
max_out_size: usize,
}
impl Codegen<'_> {
/// Generate code that corresponds to an ASN1 document described by a closure acting on a Builder.
/// Returns the generated code and the maximum possible size of the output.
///
/// # Arguments
///
/// * `buf_name` - Name of the variable holding the pointer to the output buffer.
/// * `buf_size_name` - Name of the variable holding the size of the output buffer.
/// This variable is updated by the code to hold the actual size of the data after production.
/// * `indent` - Identation string (one level).
/// * `indent_lvl` - Initial identation level.
/// * `constants` - Constant pool used to create necessary constants for the code.
/// * `variables` - Description of the variable types used when producing the output.
/// * `gen` - Closure generating the ASN1 document.
pub fn generate(
buf_name: &str,
buf_size_name: &str,
indent: &str,
indent_lvl: usize,
constants: &mut ConstantPool,
variable_info: &dyn Fn(&str) -> Result<VariableInfo>,
gen: impl FnOnce(&mut Codegen) -> Result<()>,
) -> Result<(String, usize)> {
let mut builder = Codegen {
output: String::new(),
constants,
indent: indent.to_string(),
indent_lvl,
variable_info,
tag_idx: 0,
max_out_size: 0,
};
// Create an ASN1 state, start with the provided buffer and carry on with
// building the document with closure.
builder.push_str_with_indent("asn1_state_t state;\n");
builder.push_str_with_indent(&format!(
"RETURN_IF_ERROR(asn1_start(&state, {buf_name}, *{buf_size_name}));\n"
));
gen(&mut builder)?;
// Finish the document and update the size variable.
builder.push_str_with_indent(&format!(
"RETURN_IF_ERROR(asn1_finish(&state, {buf_size_name}));\n"
));
Ok((builder.output, builder.max_out_size))
}
/// Push indentation into the output buffer.
fn push_indent(&mut self) {
let indent = self.indent.to_string();
for _ in 0..self.indent_lvl {
self.push_str(&indent);
}
}
/// Push raw string into the output buffer.
fn push_str(&mut self, s: &str) {
self.output.push_str(s);
}
/// Push raw string with indentation into the output buffer.
fn push_str_with_indent(&mut self, s: &str) {
self.push_indent();
self.push_str(s);
}
/// Register a constant byte array.
fn add_constant_byte_array(&mut self, name_hint: Option<String>, data: &[u8]) -> String {
// If constant already exist, do not recreate it
if let Some(name) = self.constants.get_var_name(&data.to_vec()) {
return name;
}
let const_name = format!(
"kConstant{}",
name_hint
.map(|x| x.to_upper_camel_case())
.unwrap_or("".into())
);
let bytes = data
.iter()
.map(|b| format!("{:#04x}", b))
.collect::<Vec<_>>()
.join(", ");
self.constants.add_entry(
data.to_vec(),
const_name.clone(),
format!("static const uint8_t {const_name}[] = {{ {} }};\n", bytes),
);
const_name
}
/// Return the maximum size of ASN1 tag, ie the tag itself, the length.
fn tag_size(max_size: usize) -> usize {
// For now, assume that all tags fit on one byte since that's the only
// option supported by the asn1 library anyway.
let tag_bytes = 1;
// The asn1 library only supports tag with up to 0xffff bytes of data
// so use this as an upper bound.
let len_bytes = if max_size <= 0x7f {
// The length fits on a single byte.
1
} else if max_size <= 0xff {
// The length requires one byte to specify the number of bytes
// and just one byte to hold the value.
2
} else if max_size <= 0xffff {
// The length requires one byte to specify the number of bytes
// and two bytes to hold the value.
3
} else {
panic!("the asn1 library only supports tag with length up to 0xffff");
};
tag_bytes + len_bytes
}
// Same as `tag_size` but also count the content size.
fn tag_and_content_size(size: usize) -> usize {
Self::tag_size(size) + size
}
/// Push a tagged raw OID into the ASN1 output, the buffer and its size are arbitrary C expressions.
fn push_raw_oid(&mut self, expr: &str, expr_size: &str, max_size: usize) {
// A tagged OID needs a tag, up to 3 bytes of length and the OID itself.
// Don't try to exactly compute how many bytes we need for the length.
self.max_out_size += Self::tag_and_content_size(max_size);
self.push_str_with_indent(&format!(
"RETURN_IF_ERROR(asn1_push_oid_raw(&state, {expr}, {expr_size}));\n"
))
}
/// Push a bit in a bitstring.
fn push_bit(&mut self, bitstring_tagname: &str, val: &Value<bool>) -> Result<()> {
match val {
Value::Literal(x) => {
self.push_str_with_indent(&format!(
"RETURN_IF_ERROR(asn1_bitstring_push_bit({bitstring_tagname}, {x}));\n"
));
}
Value::Variable(Variable { name, convert }) => {
let VariableInfo {
codegen,
var_type: source_type,
} = (self.variable_info)(name)?;
match source_type {
VariableType::Boolean => {
ensure!(
convert.is_none(),
"cannot use a convertion from boolean to boolean"
);
let VariableCodegenInfo::Boolean { value_expr } = codegen else {
bail!("internal error: boolean not represented by a VariableCodegenInfo::Boolean");
};
self.push_str_with_indent(&format!("RETURN_IF_ERROR(asn1_bitstring_push_bit({bitstring_tagname}, {value_expr}));\n"));
}
_ => bail!(
"conversion from to {:?} to boolean is not supported",
source_type
),
}
}
}
Ok(())
}
}
impl Tag {
// Return the value that corresponds to a tag and can be passed to asn1 functions.
fn codestring(&self) -> String {
match self {
Tag::Oid => "kAsn1TagNumberOid".into(),
Tag::Boolean => "kAsn1TagNumberBoolean".into(),
Tag::Integer => "kAsn1TagNumberInteger".into(),
Tag::GeneralizedTime => "kAsn1TagNumberGeneralizedTime".into(),
Tag::PrintableString => "kAsn1TagNumberPrintableString".into(),
Tag::Utf8String => "kAsn1TagNumberUtf8String".into(),
Tag::Sequence => "kAsn1TagNumberSequence".into(),
Tag::Set => "kAsn1TagNumberSet".into(),
Tag::OctetString => "kAsn1TagNumberOctetString".into(),
Tag::BitString => "kAsn1TagNumberBitString".into(),
&Tag::Context { constructed, value } => format!(
"kAsn1TagClassContext{} | {value}",
if constructed {
" | kAsn1TagFormConstructed"
} else {
""
}
),
}
}
}
impl Builder for Codegen<'_> {
/// Push a byte into the ASN1 output, the value can be any C expression.
fn push_byte(&mut self, val: u8) -> Result<()> {
self.push_str_with_indent(&format!(
"RETURN_IF_ERROR(asn1_push_byte(&state, {val}));\n"
));
self.max_out_size += 1;
Ok(())
}
/// Push a tagged boolean into the ASN1 output.
fn push_boolean(&mut self, tag: &Tag, val: &Value<bool>) -> Result<()> {
match val {
Value::Literal(x) => {
let bool_str = if *x { "true" } else { "false" };
self.push_str_with_indent(&format!(
"RETURN_IF_ERROR(asn1_push_bool(&state, {}, {}));\n",
tag.codestring(),
bool_str
));
}
Value::Variable(Variable { name, convert }) => {
let VariableInfo {
codegen,
var_type: source_type,
} = (self.variable_info)(name)?;
// Verify that type is correct.
match source_type {
VariableType::Boolean =>
ensure!(convert.is_none(), "using an boolean variable for an boolean field cannot specify a conversion"),
_ => bail!(
"using a variable of type {source_type:?} for a boolean field is not supported"
),
}
match codegen {
VariableCodegenInfo::Boolean { value_expr } => {
self.push_str_with_indent(&format!(
"RETURN_IF_ERROR(asn1_push_bool(&state, {}, {value_expr}));\n",
tag.codestring()
))
}
_ => bail!("internal error: boolean represented by a {source_type:?}"),
}
}
}
// A boolean only requires one byte of data (plus the tag).
self.max_out_size += Self::tag_and_content_size(1);
Ok(())
}
/// Push a tagged integer into the ASN1 output, the buffer (a big-endian integer) and its size
/// are arbitrary C expressions.
fn push_integer(
&mut self,
name_hint: Option<String>,
tag: &Tag,
val: &Value<BigUint>,
) -> Result<()> {
match val {
// For a literal, try to use `asn1_push_uint32` if possible, otherwise
// create a constant in the pool to hold the encoding and use `asn1_push_integer`.
// For unsigned integers, we might need to push one more byte of data then indicated
// by the length since they are represented in two's completement so an unsigned number
// with the MSB bit set needs to be padded with a 0x00 byte so that it is not interpreted
// as a negative number. Therefore, always add one to estimate.
Value::Literal(x) => {
if x.bits() <= 32 {
self.push_str_with_indent(&format!(
"RETURN_IF_ERROR(asn1_push_uint32(&state, {}, {x}));\n",
tag.codestring()
));
self.max_out_size += Self::tag_and_content_size(1 + (x.bits() + 7) / 8);
} else {
let bytes = x.to_bytes_be();
let const_name = self.add_constant_byte_array(name_hint, &bytes);
self.push_str_with_indent(
&format!(
"RETURN_IF_ERROR(asn1_push_integer(&state, {}, false, {const_name}, sizeof({const_name})));\n",
tag.codestring())
);
self.max_out_size += Self::tag_and_content_size(1 + bytes.len())
}
}
Value::Variable(Variable { name, convert }) => {
let VariableInfo {
codegen,
var_type: source_type,
} = (self.variable_info)(name)?;
// Get the maximum size and verify that types and conversion are correct.
let size = match source_type {
VariableType::Integer { size } => {
ensure!(convert.is_none(), "using an integer variable for an integer field cannot specify a conversion");
size
}
VariableType::ByteArray { size } => {
match convert {
None => bail!("using a byte array variable for an integer field must specify a conversion"),
Some(Conversion::BigEndian) => (),
_ => bail!("conversion {:?} from byte array to integer is not supported", convert),
}
size
}
_ => bail!(
"using a variable of type {source_type:?} for an integer field is not supported"
),
};
self.max_out_size += Self::tag_and_content_size(1 + size);
// For variables, an integer can either be represented by a pointer to a big-endian
// byte array, or by a `uint32_t` for a very small integers. Use `asn1_push_uint32`
// or `asn1_push_integer` depending on the case.
match codegen {
VariableCodegenInfo::Int32 { value_expr } => {
self.push_str_with_indent(&format!(
"RETURN_IF_ERROR(asn1_push_uint32(&state, {}, {value_expr}));\n",
tag.codestring()
))
}
VariableCodegenInfo::Pointer {
ptr_expr,
size_expr,
} => {
// Make sure the type is correct and get the size.
self.push_str_with_indent(&format!("RETURN_IF_ERROR(asn1_push_integer(&state, {}, false, {ptr_expr}, {size_expr}));\n", tag.codestring()))
}
_ => bail!("internal error: integer represented by a {source_type:?}"),
}
}
}
Ok(())
}
/// Push a byte array into the ASN1 output, represeting an integer. If the provided buffer is too small,
/// it will be padded with zeroes. Note that this function does not add a tag to the ASN1 output.
fn push_integer_pad(
&mut self,
name_hint: Option<String>,
val: &Value<BigUint>,
size: usize,
) -> Result<()> {
match val {
Value::Literal(x) => {
let data = &x.to_bytes_be();
let data = [vec![0; size - data.len()], data.clone()].concat();
let const_name = self.add_constant_byte_array(name_hint, &data);
self.push_str_with_indent(&format!("RETURN_IF_ERROR(asn1_push_bytes(&state, {const_name}, sizeof({const_name})));\n"));
// There is not tag, we are just pushing the data itself.
self.max_out_size += data.len();
}
Value::Variable(Variable { name, convert }) => {
let VariableInfo {
codegen,
var_type: source_type,
} = (self.variable_info)(name)?;
match source_type {
VariableType::Integer { size } => {
ensure!(convert.is_none(), "using an integer variable for an integer field cannot specify a conversion");
let VariableCodegenInfo::Pointer {
ptr_expr,
size_expr,
} = codegen
else {
bail!("the codegen backend does not support small integers for padded integer fields");
};
// There is not tag, we are just pushing the data itself.
self.max_out_size += size;
self.push_str_with_indent(&format!(
"RETURN_IF_ERROR(asn1_push_integer_pad(&state, false, {ptr_expr}, {size_expr}, {size}));\n"
))
}
_ => bail!(
"using a variable of type {source_type:?} for a padded integer field is not supported"
),
}
}
}
Ok(())
}
/// Push a byte array of fixed length into the ASN1 output. Note that this function does not add a tag to
/// the ASN1 output.
fn push_byte_array(&mut self, name_hint: Option<String>, val: &Value<Vec<u8>>) -> Result<()> {
match val {
Value::Literal(x) => {
let const_name = self.add_constant_byte_array(name_hint, x);
self.push_str_with_indent(&format!("RETURN_IF_ERROR(asn1_push_bytes(&state, {const_name}, sizeof({const_name})));\n"));
// There is not tag, we are just pushing the data itself.
self.max_out_size += x.len();
}
Value::Variable(Variable { name, convert }) => {
let VariableInfo {
codegen,
var_type: source_type,
} = (self.variable_info)(name)?;
match source_type {
VariableType::ByteArray { size } => {
ensure!(convert.is_none(), "using a byte-array variable for a byte-array field cannot specify a conversion");
let VariableCodegenInfo::Pointer {
ptr_expr,
size_expr,
} = codegen
else {
bail!("internal error: byte-array represented by a VariableCodegenInfo::Int32");
};
// There is not tag, we are just pushing the data itself.
self.max_out_size += size;
self.push_str_with_indent(&format!(
"RETURN_IF_ERROR(asn1_push_bytes(&state, {ptr_expr}, {size_expr}));\n"
))
}
_ => bail!(
"using a variable of type {source_type:?} for a byte-array field is not supported",
),
}
}
}
Ok(())
}
/// Push an optionally tagged string into the ASN1 output.
fn push_string(
&mut self,
_name_hint: Option<String>,
str_type: &Tag,
val: &Value<String>,
) -> Result<()> {
let str_type = str_type.codestring();
match val {
Value::Literal(x) => {
let len = x.len();
self.push_str_with_indent(&format!(
"RETURN_IF_ERROR(asn1_push_string(&state, {str_type}, \"{x}\", {len}));\n"
));
// A tagged string needs a tag (up to 3 bytes of length) and the string itself.
// Don't try to exactly compute how many bytes we need for the length.
self.max_out_size += Self::tag_and_content_size(x.len());
}
Value::Variable(Variable { name, convert }) => {
let VariableInfo {
codegen,
var_type: source_type,
} = (self.variable_info)(name)?;
// When pushing a variable, it can either a string (use asn1_push_string) or a byte array
// that needs to converted (use asn1_push_hexstring).
match source_type {
VariableType::String { size } => {
ensure!(
convert.is_none(),
"cannot use a convertion from string to string"
);
let VariableCodegenInfo::Pointer {
ptr_expr,
size_expr,
} = codegen
else {
bail!("internal error: string not represented by a VariableCodegenInfo::Pointer");
};
self.push_str_with_indent(&format!("RETURN_IF_ERROR(asn1_push_string(&state, {str_type}, {ptr_expr}, {size_expr}));\n"));
self.max_out_size += Self::tag_and_content_size(size);
}
VariableType::ByteArray { size } => {
match convert {
None => bail!("using a byte array variable for an string field must to specify a conversion"),
Some(Conversion::LowercaseHex) => {
let VariableCodegenInfo::Pointer { ptr_expr, size_expr } = codegen else {
bail!("internal error: string not represented by a VariableCodegenInfo::Pointer");
};
// The conversion doubles the size.
self.max_out_size += Self::tag_and_content_size(2 * size);
self.push_str_with_indent(
&format!("RETURN_IF_ERROR(asn1_push_hexstring(&state, {str_type}, {ptr_expr}, {size_expr}));\n"))
}
_ => bail!("conversion {convert:?} from byte array to string is not supported"),
}
}
_ => bail!("conversion from to {source_type:?} to string is not supported",),
}
}
}
Ok(())
}
fn push_bitstring<'a>(
&mut self,
name_hint: Option<String>,
tag: &Tag,
bits: &[Value<bool>],
) -> Result<()> {
self.push_tag(name_hint.clone(), tag, |builder| {
let tag_name = format!(
"bit{}_{}",
builder.tag_idx,
name_hint.map(|x| x.to_snake_case()).unwrap_or("".into())
);
builder.tag_idx += 1;
builder.push_str_with_indent(&format!("asn1_bitstring_t {tag_name};\n"));
builder.push_str_with_indent(&format!(
"RETURN_IF_ERROR(asn1_start_bitstring(&state, &{tag_name}));\n"
));
builder.push_str_with_indent("{\n");
builder.indent_lvl += 1;
for bit in bits {
builder.push_bit(&format!("&{tag_name}"), bit)?;
}
// One byte for the unused bits and then one byte per 8 bits.
builder.max_out_size += 1 + (bits.len() + 7) / 8;
builder.indent_lvl -= 1;
builder.push_str_with_indent("}\n");
builder.push_str_with_indent(&format!(
"RETURN_IF_ERROR(asn1_finish_bitstring(&{tag_name}));\n"
));
Ok(())
})
}
fn push_oid(&mut self, oid: &Oid) -> Result<()> {
// Create constant.
let bytes = oid.to_der()?;
let oid_const_name = self.add_constant_byte_array(Some(format!("oid_{}", oid)), &bytes);
self.push_raw_oid(
&oid_const_name,
&format!("sizeof({oid_const_name})"),
bytes.len(),
);
Ok(())
}
// Helper function for outputting ASN1 tags.
fn push_tag(
&mut self,
name_hint: Option<String>,
tag: &Tag,
gen: impl FnOnce(&mut Self) -> Result<()>,
) -> Result<()> {
let tag_name = format!(
"tag{}_{}",
self.tag_idx,
name_hint.map(|x| x.to_snake_case()).unwrap_or("".into())
);
self.tag_idx += 1;
self.push_str_with_indent(&format!("asn1_tag_t {tag_name};\n"));
self.push_str_with_indent(&format!(
"RETURN_IF_ERROR(asn1_start_tag(&state, &{tag_name}, {}));\n",
tag.codestring()
));
self.push_str_with_indent("{\n");
self.indent_lvl += 1;
// We do not yet know how many bytes the content will use: remember the current
// value of the estimate and see by how much it increases during generation
// to obtain a bound.
let old_max_size = self.max_out_size;
gen(self)?;
let max_size = self.max_out_size - old_max_size;
self.max_out_size += Self::tag_size(max_size);
self.indent_lvl -= 1;
self.push_str_with_indent("}\n");
self.push_str_with_indent(&format!("RETURN_IF_ERROR(asn1_finish_tag(&{tag_name}));\n"));
Ok(())
}
}