opentitanlib/util/
present.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
// Copyright lowRISC contributors (OpenTitan project).
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0

use anyhow::{bail, ensure, Result};
use std::convert::TryInto;

/// PRESENT block cipher.
///
/// Based on version 1.2 of the following Python implementation
/// <https://github.com/doegox/python-cryptoplus>
pub struct Present {
    round_keys: Vec<u64>,
}

impl Present {
    pub fn try_new_rounds(key: Vec<u8>, rounds: usize) -> Result<Present> {
        ensure!(
            (1..=254).contains(&rounds),
            "unsupported number of rounds {}",
            rounds
        );

        let round_keys = match key.len() {
            10 => generate_round_keys_80(key, rounds),
            16 => generate_round_keys_128(key, rounds),
            _ => bail!("key length must be 80 or 128 bits"),
        };

        Ok(Present { round_keys })
    }

    /// Create a new instance of the PRESENT cipher.
    ///
    /// Valid key lengths are 80 and 128 bits. All other key lengths will return an error.
    pub fn try_new(key: Vec<u8>) -> Result<Present> {
        Self::try_new_rounds(key, 32)
    }

    /// Create a new 128-bit PRESENT cipher instance.
    pub fn new_128(key: &[u8; 16]) -> Present {
        Self::try_new(key.to_vec()).unwrap()
    }

    /// Create a new 80-bit PRESENT cipher instance.
    pub fn new_80(key: &[u8; 10]) -> Present {
        Self::try_new(key.to_vec()).unwrap()
    }

    /// Encrypt a 64-bit block.
    pub fn encrypt_block(&self, block: u64) -> u64 {
        let mut state = block;
        state ^= self.round_keys[0];
        for round_key in &self.round_keys[1..] {
            state = s_box_layer(state);
            state = p_box_layer(state);
            state ^= round_key;
        }
        state
    }

    /// Decrypt a 64-bit block.
    pub fn decrypt_block(&self, block: u64) -> u64 {
        let mut state = block;
        for round_key in self.round_keys[1..].iter().rev() {
            state ^= round_key;
            state = p_box_layer_dec(state);
            state = s_box_layer_dec(state);
        }
        state ^ self.round_keys[0]
    }
}

const S_BOX: [u8; 16] = [
    0x0c, 0x05, 0x06, 0x0b, 0x09, 0x00, 0x0a, 0x0d, 0x03, 0x0e, 0x0f, 0x08, 0x04, 0x07, 0x01, 0x02,
];

const S_BOX_INV: [u8; 16] = [
    0x05, 0x0e, 0x0f, 0x08, 0x0c, 0x01, 0x02, 0x0d, 0x0b, 0x04, 0x06, 0x03, 0x00, 0x07, 0x09, 0x0a,
];

const P_BOX: [u8; 64] = [
    0x00, 0x10, 0x20, 0x30, 0x01, 0x11, 0x21, 0x31, 0x02, 0x12, 0x22, 0x32, 0x03, 0x13, 0x23, 0x33,
    0x04, 0x14, 0x24, 0x34, 0x05, 0x15, 0x25, 0x35, 0x06, 0x16, 0x26, 0x36, 0x07, 0x17, 0x27, 0x37,
    0x08, 0x18, 0x28, 0x38, 0x09, 0x19, 0x29, 0x39, 0x0a, 0x1a, 0x2a, 0x3a, 0x0b, 0x1b, 0x2b, 0x3b,
    0x0c, 0x1c, 0x2c, 0x3c, 0x0d, 0x1d, 0x2d, 0x3d, 0x0e, 0x1e, 0x2e, 0x3e, 0x0f, 0x1f, 0x2f, 0x3f,
];

const P_BOX_INV: [u8; 64] = [
    0x00, 0x04, 0x08, 0x0c, 0x10, 0x14, 0x18, 0x1c, 0x20, 0x24, 0x28, 0x2c, 0x30, 0x34, 0x38, 0x3c,
    0x01, 0x05, 0x09, 0x0d, 0x11, 0x15, 0x19, 0x1d, 0x21, 0x25, 0x29, 0x2d, 0x31, 0x35, 0x39, 0x3d,
    0x02, 0x06, 0x0a, 0x0e, 0x12, 0x16, 0x1a, 0x1e, 0x22, 0x26, 0x2a, 0x2e, 0x32, 0x36, 0x3a, 0x3e,
    0x03, 0x07, 0x0b, 0x0f, 0x13, 0x17, 0x1b, 0x1f, 0x23, 0x27, 0x2b, 0x2f, 0x33, 0x37, 0x3b, 0x3f,
];

/// Generate the round_keys for an 80-bit key.
fn generate_round_keys_80(key: Vec<u8>, rounds: usize) -> Vec<u64> {
    // Pad out key so it fits in a u128 later.
    let mut orig_key = key;
    let mut key = vec![0u8; 6];
    key.append(&mut orig_key);

    // Convert key into a u128 for easier bit manipulation.
    let key: &[u8; 16] = key.as_slice().try_into().unwrap();
    let mut key = u128::from_le_bytes(*key);

    let mut round_keys = Vec::new();
    for i in 1..rounds + 1 {
        // rawKey[0:64]
        let round_key = (key >> 16) as u64;

        // 1. Rotate bits
        // rawKey[19:len(rawKey)]+rawKey[0:19]
        key = (key & 0x7ffff) << 61 | key >> 19;

        // 2. SBox
        // rawKey[76:80] = S(rawKey[76:80])
        key = (S_BOX[(key >> 76) as usize] as u128) << 76 | (key & !0u128 >> (128 - 76));

        // 3. Salt
        // rawKey[15:20] ^ i
        key ^= (i as u128) << 15;

        round_keys.push(round_key);
    }

    round_keys
}

/// Generate the round_keys for a 128-bit key.
fn generate_round_keys_128(key: Vec<u8>, rounds: usize) -> Vec<u64> {
    let mut round_keys = Vec::new();

    // Convert key into a u128 for easier bit manipulation.
    let key: &[u8; 16] = key.as_slice().try_into().unwrap();
    let mut key = u128::from_le_bytes(*key);
    for i in 1..rounds + 1 {
        // rawKey[0:64]
        let round_key = (key >> 64) as u64;

        // 1. Rotate bits
        key = key.rotate_left(61);

        // 2. SBox
        key = (S_BOX[(key >> 124) as usize] as u128) << 124
            | (S_BOX[((key >> 120) & 0xF) as usize] as u128) << 120
            | (key & (!0u128 >> 8));

        // 3. Salt
        // rawKey[62:67] ^ i
        key ^= (i as u128) << 62;

        round_keys.push(round_key);
    }

    round_keys
}

/// SBox funciton for encryption.
fn s_box_layer(state: u64) -> u64 {
    let mut output: u64 = 0;
    for i in (0..64).step_by(4) {
        output |= (S_BOX[((state >> i) & 0x0f) as usize] as u64) << i;
    }
    output
}

/// SBox inverse function for decryption.
fn s_box_layer_dec(state: u64) -> u64 {
    let mut output: u64 = 0;
    for i in (0..64).step_by(4) {
        output |= (S_BOX_INV[((state >> i) & 0x0f) as usize] as u64) << i;
    }
    output
}

/// PBox function for encryption.
fn p_box_layer(state: u64) -> u64 {
    let mut output: u64 = 0;
    for (i, v) in P_BOX.iter().enumerate() {
        output |= ((state >> i) & 0x01) << v;
    }
    output
}

/// PBox inverse function for decryption.
fn p_box_layer_dec(state: u64) -> u64 {
    let mut output: u64 = 0;
    for (i, v) in P_BOX_INV.iter().enumerate() {
        output |= ((state >> i) & 0x01) << v;
    }
    output
}

#[cfg(test)]
mod test {
    use super::*;

    #[rustfmt::skip]
    const ROUND_KEYS_80: [u64; 32] = [
        0x0000000000000000, 0xc000000000000000, 0x5000180000000001, 0x60000a0003000001,
        0xb0000c0001400062, 0x900016000180002a, 0x0001920002c00033, 0xa000a0003240005b,
        0xd000d4001400064c, 0x30017a001a800284, 0xe01926002f400355, 0xf00a1c0324c005ed,
        0x800d5e014380649e, 0x4017b001abc02876, 0x71926802f600357f, 0x10a1ce324d005ec7,
        0x20d5e21439c649a8, 0xc17b041abc428730, 0xc926b82f60835781, 0x6a1cd924d705ec19,
        0xbd5e0d439b249aea, 0x07b077abc1a8736e, 0x426ba0f60ef5783e, 0x41cda84d741ec1d5,
        0xf5e0e839b509ae8f, 0x2b075ebc1d0736ad, 0x86ba2560ebd783ad, 0x8cdab0d744ac1d77,
        0x1e0eb19b561ae89b, 0xd075c3c1d6336acd, 0x8ba27a0eb8783ac9, 0x6dab31744f41d700,
    ];

    #[rustfmt::skip]
    const ROUND_KEYS_128: [u64; 32] = [
        0x0000000000000000, 0xcc00000000000000, 0xc300000000000000, 0x5b30000000000000,
        0x580c000000000001, 0x656cc00000000001, 0x6e60300000000001, 0xb595b30000000001,
        0xbeb980c000000002, 0x96d656cc00000002, 0x9ffae60300000002, 0x065b595b30000002,
        0x0f7feb980c000003, 0xac196d656cc00003, 0xa33dffae60300003, 0xd6b065b595b30003,
        0xdf8cf7feb980c004, 0x3b5ac196d656cc04, 0x387e33dffae60304, 0xeced6b065b595b34,
        0xe3e1f8cf7feb9809, 0x6bb3b5ac196d6569, 0xbb8f87e33dffae65, 0x80aeced6b065b590,
        0xc1ee3e1f8cf7febf, 0x2602bb3b5ac196d0, 0xcb07b8f87e33dffc, 0x34980aeced6b065d,
        0x8b2c1ee3e1f8cf78, 0x54d2602bb3b5ac1e, 0x4a2cb07b8f87e33a, 0x97534980aeced6b7,
    ];

    #[test]
    fn test_generate_80() {
        let key = vec![0u8; 10];
        let round_keys = generate_round_keys_80(key, 32);
        assert_eq!(round_keys, ROUND_KEYS_80);
    }

    #[test]
    fn test_generate_128() {
        let key = vec![0u8; 16];
        let round_keys = generate_round_keys_128(key, 32);
        assert_eq!(round_keys, ROUND_KEYS_128);
    }

    #[test]
    fn test_enc_80() -> Result<()> {
        let cipher = Present::try_new(vec![0; 10])?;
        assert_eq!(cipher.encrypt_block(0), 0x5579c1387b228445);
        Ok(())
    }

    #[test]
    fn test_dec_80() -> Result<()> {
        let cipher = Present::try_new(vec![0; 10])?;
        assert_eq!(cipher.decrypt_block(0x5579c1387b228445), 0);
        Ok(())
    }

    #[test]
    fn test_enc_128() -> Result<()> {
        let cipher = Present::try_new(vec![0; 16])?;
        assert_eq!(cipher.encrypt_block(0), 0x96db702a2e6900af);
        assert_eq!(cipher.encrypt_block(!0), 0x3c6019e5e5edd563);
        let cipher = Present::try_new(vec![0xff; 16])?;
        assert_eq!(cipher.encrypt_block(0), 0x13238c710272a5d8);
        assert_eq!(cipher.encrypt_block(!0), 0x628d9fbd4218e5b4);
        Ok(())
    }

    #[test]
    fn test_dec_128() -> Result<()> {
        let cipher = Present::try_new(vec![0; 16])?;
        assert_eq!(cipher.decrypt_block(0x96db702a2e6900af), 0);
        assert_eq!(cipher.decrypt_block(0x3c6019e5e5edd563), !0);
        let cipher = Present::try_new(vec![0xff; 16])?;
        assert_eq!(cipher.decrypt_block(0x13238c710272a5d8), 0);
        assert_eq!(cipher.decrypt_block(0x628d9fbd4218e5b4), !0);
        Ok(())
    }
}