opentitanlib/util/
bigint.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
// Copyright lowRISC contributors (OpenTitan project).
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0

use num_bigint_dig::BigUint;
use num_traits::Num;
use std::cmp::Ordering;
use std::fmt;
use std::iter;
use thiserror::Error;

use crate::util::parse_int::ParseInt;

#[derive(Error, Debug, Clone, PartialEq, Eq)]
pub enum ParseBigIntError {
    #[error("integer is too large")]
    Overflow,
    #[error("integer is too small")]
    Underflow,
    #[error(transparent)]
    ParseBigIntError(#[from] num_bigint_dig::ParseBigIntError),
}

/// A fixed-size unsigned big integer.
///
/// This struct wraps a `BigUint` to facilitate defining new fixed-size unsigned integer types for
/// better type safety.
///
/// An integer stored in this type is fixed-size in the sense that the minimum number of bits
/// required to represent it, i.e. its bit length, is at most `BIT_LEN`. This size can be specified
/// using the const parameters `BIT_LEN` and `EXACT_LEN` as follows:
///   - When `EXACT_LEN` is `false`, the bit length of the integer can be at most `BIT_LEN` bits,
///     e.g. SHA-256 digests (at most 256 bits) or RSA-3072 signatures (at most 3072 bits),
///   - When `EXACT_LEN` is `true`, the number of bits required to represent the integer must be
///     exactly `BIT_LEN` bits, e.g. RSA-3072 moduli (exactly 3072 bits).
///
/// Note that while the type encapsulates the size information, the actual check is performed at
/// runtime when an instance is created (see `check_len()`).
///
/// This struct is not meant to be used directly, please see the `fixed_size_bigint` macro which
/// also generates the required boilerplate code for new types.
#[derive(Debug, Clone, Eq, PartialEq)]
pub(crate) struct FixedSizeBigInt<const BIT_LEN: usize, const EXACT_LEN: bool>(BigUint);

impl<const BIT_LEN: usize, const EXACT_LEN: bool> FixedSizeBigInt<BIT_LEN, EXACT_LEN> {
    const BYTE_LEN: usize = BIT_LEN.saturating_add(u8::BITS as usize - 1) / u8::BITS as usize;

    /// Checks the bit length of the `FixedSizeBigInt`.
    ///
    /// Bit length of a `FixedSizeBigInt` can be at most `BIT_LEN` if `EXACT_LEN` is `false`, must
    /// be exactly `BIT_LEN` otherwise.
    fn new_from_biguint(biguint: BigUint) -> Result<Self, ParseBigIntError> {
        match (biguint.bits().cmp(&BIT_LEN), EXACT_LEN) {
            (Ordering::Greater, _) => Err(ParseBigIntError::Overflow),
            (Ordering::Equal, _) => Ok(Self(biguint)),
            (Ordering::Less, true) => Err(ParseBigIntError::Underflow),
            (Ordering::Less, false) => Ok(Self(biguint)),
        }
    }

    /// Creates a `FixedSizeBigInt` from little-endian bytes.
    pub(crate) fn from_le_bytes(bytes: impl AsRef<[u8]>) -> Result<Self, ParseBigIntError> {
        Self::new_from_biguint(BigUint::from_bytes_le(bytes.as_ref()))
    }

    /// Creates a `FixedSizeBigInt` from big-endian bytes.
    pub(crate) fn from_be_bytes(bytes: impl AsRef<[u8]>) -> Result<Self, ParseBigIntError> {
        Self::new_from_biguint(BigUint::from_bytes_be(bytes.as_ref()))
    }

    /// Returns the bit length.
    ///
    /// Bit length of `FixedSizeBigInt` is the minimum number of bits required to represent its
    /// value. The underlying storage may be larger.
    pub(crate) fn bit_len(&self) -> usize {
        self.0.bits()
    }

    /// Returns the byte representation in little-endian order.
    pub(crate) fn to_le_bytes(&self) -> Vec<u8> {
        let mut v = self.0.to_bytes_le();
        assert!(Self::BYTE_LEN >= v.len());
        // Append since `v` is little-endian.
        v.resize(Self::BYTE_LEN, 0);
        v
    }

    /// Returns the byte representation in big-endian order.
    pub(crate) fn to_be_bytes(&self) -> Vec<u8> {
        let mut v = self.0.to_bytes_be();
        assert!(Self::BYTE_LEN >= v.len());
        // Prepend since `v` is big-endian.
        v.splice(0..0, iter::repeat(0).take(Self::BYTE_LEN - v.len()));
        v
    }

    /// Returns the underlying `BigUint`.
    pub(crate) fn as_biguint(&self) -> &BigUint {
        &self.0
    }
}

impl<const BIT_LEN: usize, const EXACT_LEN: bool> ParseInt for FixedSizeBigInt<BIT_LEN, EXACT_LEN> {
    type FromStrRadixErr = ParseBigIntError;

    fn from_str_radix(src: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> {
        Self::new_from_biguint(
            BigUint::from_str_radix(src, radix).map_err(ParseBigIntError::ParseBigIntError)?,
        )
    }
}

impl<const BIT_LEN: usize, const EXACT_LEN: bool> fmt::Display
    for FixedSizeBigInt<BIT_LEN, EXACT_LEN>
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(
            &format_args!("{:#0width$x}", self.0, width = Self::BYTE_LEN * 2 + 2),
            f,
        )
    }
}

/// Helper macro for the `fixed_size_bigint` macro.
macro_rules! fixed_size_bigint_impl {
    ($struct_name:ident, $bit_len:expr, $exact_len:expr) => {
        #[derive(serde::Serialize, Debug, Clone, Eq, PartialEq)]
        #[serde(into = "String")]
        pub struct $struct_name($crate::util::bigint::FixedSizeBigInt<$bit_len, $exact_len>);

        const _: () = {
            use num_bigint_dig::BigUint;
            use std::fmt;
            use std::result::Result;

            use $crate::util::bigint::{FixedSizeBigInt, ParseBigIntError};
            use $crate::util::parse_int::ParseInt;

            impl $struct_name {
                pub fn from_le_bytes(bytes: impl AsRef<[u8]>) -> Result<Self, ParseBigIntError> {
                    Ok($struct_name(
                        FixedSizeBigInt::<$bit_len, $exact_len>::from_le_bytes(bytes)?,
                    ))
                }

                pub fn from_be_bytes(bytes: impl AsRef<[u8]>) -> Result<Self, ParseBigIntError> {
                    Ok($struct_name(
                        FixedSizeBigInt::<$bit_len, $exact_len>::from_be_bytes(bytes)?,
                    ))
                }

                pub fn bit_len(&self) -> usize {
                    self.0.bit_len()
                }

                pub fn to_le_bytes(&self) -> Vec<u8> {
                    self.0.to_le_bytes()
                }

                pub fn to_be_bytes(&self) -> Vec<u8> {
                    self.0.to_be_bytes()
                }

                pub fn as_biguint(&self) -> &BigUint {
                    self.0.as_biguint()
                }
            }

            impl ParseInt for $struct_name {
                type FromStrRadixErr = ParseBigIntError;

                fn from_str_radix(src: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> {
                    Ok($struct_name(
                        FixedSizeBigInt::<$bit_len, $exact_len>::from_str_radix(src, radix)?,
                    ))
                }
            }

            impl fmt::Display for $struct_name {
                fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
                    fmt::Display::fmt(&self.0, f)
                }
            }

            impl From<$struct_name> for String {
                fn from(s: $struct_name) -> String {
                    s.0.to_string()
                }
            }
        };
    };
}

pub(crate) use fixed_size_bigint_impl;

/// Macro for defining a new fixed-size unsigned big integer type.
///
/// Defines a new type that wraps a `FixedSizeBigInt`. This macro is intended to be used within this
/// crate to define types which can then be exported as needed:
///
/// ```
/// use crate::util::bigint::fixed_size_bigint;
///
/// // Define a type for RSA-3072 moduli (exactly 3072 bits long):
/// fixed_size_bigint!(Rsa3072Modulus, 3072);
///
/// // Define a type for SHA-256 digests (at most 256 bits long):
/// fixed_size_bigint!(Sha256Digest, at_most 256);
/// ```
macro_rules! fixed_size_bigint {
    ($struct_name:ident, $bit_len:expr) => {
        $crate::util::bigint::fixed_size_bigint_impl!($struct_name, $bit_len, true);
    };
    ($struct_name:ident, at_most $bit_len:expr) => {
        $crate::util::bigint::fixed_size_bigint_impl!($struct_name, $bit_len, false);
    };
}

pub(crate) use fixed_size_bigint;

#[cfg(test)]
mod tests {
    use super::*;

    fixed_size_bigint!(TestArray, at_most 16);
    fixed_size_bigint!(TestArrayExact, 16);

    #[test]
    fn test_from_to_le_bytes() {
        fn check(slice: &[u8], data: &[u8]) {
            assert_eq!(TestArray::from_le_bytes(slice).unwrap().to_le_bytes(), data);
        }
        check(&[], &[0, 0]);
        check(&[1], &[1, 0]);
        check(&[0, 1], &[0, 1]);
        check(&[1, 0], &[1, 0]);

        assert!(TestArray::from_le_bytes([1, 2, 3]).is_err());
    }

    #[test]
    fn test_from_to_le_bytes_exact_len() {
        fn check(slice: &[u8], data: &[u8]) {
            assert_eq!(
                TestArrayExact::from_le_bytes(slice).unwrap().to_le_bytes(),
                data
            );
        }
        check(&[0, 128], &[0, 128]);
        check(&[255, 255, 0], &[255, 255]);

        assert!(TestArrayExact::from_le_bytes([1]).is_err());
        assert!(TestArrayExact::from_le_bytes([255, 127]).is_err());
        assert!(TestArrayExact::from_le_bytes([0, 0, 1]).is_err());
    }

    #[test]
    fn test_from_to_be_bytes() {
        fn check(slice: &[u8], data: &[u8]) {
            assert_eq!(TestArray::from_be_bytes(slice).unwrap().to_be_bytes(), data);
        }
        check(&[1], &[0, 1]);
        check(&[1, 0], &[1, 0]);
        check(&[0, 1], &[0, 1]);

        assert!(TestArray::from_be_bytes([1, 2, 1]).is_err());
    }

    #[test]
    fn test_from_to_be_bytes_exact_len() {
        fn check(slice: &[u8], data: &[u8]) {
            assert_eq!(
                TestArrayExact::from_be_bytes(slice).unwrap().to_be_bytes(),
                data
            );
        }
        check(&[128, 1], &[128, 1]);
        check(&[0, 255, 255], &[255, 255]);

        assert!(TestArrayExact::from_be_bytes([1]).is_err());
        assert!(TestArrayExact::from_be_bytes([127, 1]).is_err());
        assert!(TestArrayExact::from_be_bytes([1, 0, 0]).is_err());
    }

    #[test]
    fn test_bit_len() {
        fn check(slice: &[u8], bit_len: usize) {
            assert_eq!(TestArray::from_le_bytes(slice).unwrap().bit_len(), bit_len);
        }
        check(&[1], 1);
        check(&[1, 0], 1);
        check(&[255], 8);
        check(&[0, 1], 9);
        check(&[0, 128], 16);
    }

    #[test]
    fn test_from_str() {
        assert_eq!(TestArray::from_str("0x01").unwrap().to_le_bytes(), [1, 0]);
        assert_eq!(
            TestArray::from_str("0x00201").unwrap().to_le_bytes(),
            [1, 2]
        );
        assert!(TestArray::from_str("0x030201").is_err());
    }

    #[test]
    fn test_from_str_exact_len() {
        assert_eq!(
            TestArrayExact::from_str("0x08001").unwrap().to_le_bytes(),
            [1, 128]
        );

        assert!(TestArrayExact::from_str("0x01").is_err());
        assert!(TestArrayExact::from_str("0x0201").is_err());
        assert!(TestArrayExact::from_str("0x030201").is_err());
    }

    #[test]
    fn test_fmt() {
        let exact = TestArrayExact::from_str("0xabcd").unwrap();
        assert_eq!(exact.to_string(), "0xabcd");

        let at_most = TestArray::from_str("0xab").unwrap();
        assert_eq!(at_most.to_string(), "0x00ab");

        let at_most_full = TestArray::from_str("0xabcd").unwrap();
        assert_eq!(at_most_full.to_string(), "0xabcd");
    }
}