opentitanlib/transport/ultradebug/
mpsse.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
// Copyright lowRISC contributors (OpenTitan project).
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0

use std::io::{Read, Write};
use std::time::{Duration, Instant};

use anyhow::{bail, Result};
use bitflags::bitflags;
use log;
use thiserror::Error;

use crate::io::gpio::GpioError;
use crate::io::spi::SpiError;

pub const MPSSE_WRCLK_FALLING: u8 = 0x01;
pub const MPSSE_RDCLK_FALLING: u8 = 0x04;
pub const MPSSE_DIR_LSB_FIRST: u8 = 0x08;
pub const MPSSE_WRITE_DATA: u8 = 0x10;
pub const MPSSE_READ_DATA: u8 = 0x20;
pub const MPSSE_SET_LOW_GPIO: u8 = 0x80;
pub const MPSSE_SET_HIGH_GPIO: u8 = 0x82;
pub const MPSSE_GET_LOW_GPIO: u8 = 0x81;
pub const MPSSE_GET_HIGH_GPIO: u8 = 0x83;
pub const MPSSE_SET_CLKDIV: u8 = 0x86;
pub const MPSSE_DISABLE_DIVBY5: u8 = 0x8A;
pub const MPSSE_INVALID_COMMAND: u8 = 0xAA;
pub const MPSSE_CLOCK_FREQUENCY: u32 = 12_000_000;

bitflags! {
    /// Gpio direction for output pinds on an FTDI interface.
    #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
    pub struct GpioDirection: u8 {
        const OUT_0 = 0x01;
        const OUT_1 = 0x02;
        const OUT_2 = 0x04;
        const OUT_3 = 0x08;
        const OUT_4 = 0x10;
        const OUT_5 = 0x20;
        const OUT_6 = 0x40;
        const OUT_7 = 0x80;
    }
}

/// ClockEdge defines how data will be driven or sampled on the FTDI device.
#[derive(Debug, Clone, Copy)]
pub enum ClockEdge {
    Rising,
    Falling,
}

/// BitDirection determines in which order the bits will be shifted in/out on
/// a serial interface.
#[derive(Debug, Clone, Copy)]
pub enum BitDirection {
    LsbFirst,
    MsbFirst,
}

/// DataShiftOptions determines the full set of serial options for a data
/// in/out operation.
#[derive(Debug)]
pub struct DataShiftOptions {
    pub read_clock_edge: ClockEdge,
    pub write_clock_edge: ClockEdge,
    pub bit_direction: BitDirection,
    pub write_data: bool,
    pub read_data: bool,
}

impl DataShiftOptions {
    /// Transform a `DataShiftOptions` structure into an MPSSE opcode.
    pub fn as_opcode(&self) -> u8 {
        let mut opcode = 0u8;
        opcode |= match self.read_clock_edge {
            ClockEdge::Rising => 0,
            ClockEdge::Falling => MPSSE_RDCLK_FALLING,
        };
        opcode |= match self.write_clock_edge {
            ClockEdge::Rising => 0,
            ClockEdge::Falling => MPSSE_WRCLK_FALLING,
        };
        opcode |= match self.bit_direction {
            BitDirection::LsbFirst => MPSSE_DIR_LSB_FIRST,
            BitDirection::MsbFirst => 0,
        };
        opcode |= match self.write_data {
            false => 0,
            true => MPSSE_WRITE_DATA,
        };
        opcode |= match self.read_data {
            false => 0,
            true => MPSSE_READ_DATA,
        };
        opcode
    }
}

impl Default for DataShiftOptions {
    fn default() -> Self {
        DataShiftOptions {
            read_clock_edge: ClockEdge::Rising,
            write_clock_edge: ClockEdge::Rising,
            bit_direction: BitDirection::MsbFirst,
            write_data: false,
            read_data: false,
        }
    }
}

/// MPSSE `Command`s are used to configure the device, set or get GPIOs or
/// perform serial data transfers.
pub enum Command<'rd, 'wr> {
    ReadData(DataShiftOptions, &'rd mut [u8]),
    WriteData(DataShiftOptions, &'wr [u8]),
    TransactData(DataShiftOptions, &'wr [u8], DataShiftOptions, &'rd mut [u8]),
    SetLowGpio(GpioDirection, u8),
    GetLowGpio(&'rd mut u8),
    SetClockDivisor(u16),
    DisableDivBy5,
    InvalidCommand,
}

impl Command<'_, '_> {
    const MAX_LENGTH: usize = 65536;

    /// Calculate the response length for this `Command`.
    pub fn response_length(&self) -> usize {
        match self {
            Command::ReadData(_, buf) => buf.len(),
            Command::TransactData(_, _, _, buf) => buf.len(),
            Command::GetLowGpio(_) => 1,
            Command::WriteData(_, _)
            | Command::SetLowGpio(_, _)
            | Command::SetClockDivisor(_)
            | Command::DisableDivBy5
            | Command::InvalidCommand => 0,
        }
    }

    /// Extend a `Vec<u8>` with the low-level representation of this `Command`.
    pub fn extend(&self, buf: &mut Vec<u8>) -> Result<()> {
        match self {
            Command::ReadData(options, data) => {
                if data.len() > Command::MAX_LENGTH {
                    bail!(SpiError::InvalidDataLength(data.len()));
                }
                buf.push(options.as_opcode());
                buf.extend_from_slice(&((data.len() - 1) as u16).to_le_bytes());
            }
            Command::WriteData(options, data) => {
                if data.len() > Command::MAX_LENGTH {
                    bail!(SpiError::InvalidDataLength(data.len()));
                }
                buf.push(options.as_opcode());
                buf.extend_from_slice(&((data.len() - 1) as u16).to_le_bytes());
                buf.extend(data.iter());
            }
            Command::TransactData(woptions, wdata, roptions, rdata) => {
                if wdata.len() > Command::MAX_LENGTH {
                    bail!(SpiError::InvalidDataLength(wdata.len()));
                }
                if wdata.len() != rdata.len() {
                    bail!(SpiError::MismatchedDataLength(wdata.len(), rdata.len()));
                }
                buf.push(woptions.as_opcode() | roptions.as_opcode());
                buf.extend_from_slice(&((wdata.len() - 1) as u16).to_le_bytes());
                buf.extend(wdata.iter());
            }
            Command::SetLowGpio(direction, value) => {
                buf.push(MPSSE_SET_LOW_GPIO);
                buf.push(*value);
                buf.push(direction.bits());
            }
            Command::GetLowGpio(_) => {
                buf.push(MPSSE_GET_LOW_GPIO);
            }
            Command::SetClockDivisor(divisor) => {
                buf.push(MPSSE_SET_CLKDIV);
                buf.extend_from_slice(&divisor.to_le_bytes());
            }
            Command::DisableDivBy5 => {
                buf.push(MPSSE_DISABLE_DIVBY5);
            }
            Command::InvalidCommand => {
                buf.push(MPSSE_INVALID_COMMAND);
            }
        }
        Ok(())
    }
}

#[derive(Error, Debug)]
pub enum Error {
    #[error("unknown MPSSE error: {0:02x} {1:02x}")]
    MpsseUnknown(u8, u8),
}

/// An MPSSE `Context` is the high-level interface to an MPSSE FTDI interface.
pub struct Context {
    // The FTDI interface/device.
    pub device: ftdi::Device,
    // The maximum clock frequency the device can operate at.
    pub max_clock_frequency: u32,
    // The current clock frequency the device is operating at.
    pub clock_frequency: u32,
    // The input/output pin direction of the GPIO pins.
    pub gpio_direction: GpioDirection,
    // The current value of the GPIO pins.
    pub gpio_value: u8,
    // The receive timeout of the last read operation in a command sequence.
    pub receive_timeout: Duration,
}

impl Context {
    /// Create a new MPSSE `Context` given an FTDI device.
    pub fn new(mut device: ftdi::Device) -> Result<Self> {
        device.usb_set_event_char(None)?;
        device.usb_set_error_char(None)?;
        device.set_latency_timer(1)?;
        device.set_bitmode(0, ftdi::BitMode::Reset)?;
        device.set_bitmode(0, ftdi::BitMode::Mpsse)?;
        // Give the device some time to configure itself.
        std::thread::sleep(Duration::from_millis(50));

        let mut context = Context {
            device,
            max_clock_frequency: MPSSE_CLOCK_FREQUENCY / 2,
            clock_frequency: MPSSE_CLOCK_FREQUENCY / 2,
            gpio_direction: GpioDirection::empty(),
            gpio_value: 0,
            receive_timeout: Duration::from_millis(100),
        };
        context.set_clock_frequency(context.clock_frequency)?;
        Ok(context)
    }

    fn read_timeout(&mut self, rxbuf: &mut [u8], timeout: Duration) -> Result<usize> {
        let deadline = Instant::now() + timeout;
        let mut rxlen = 0;
        while rxlen < rxbuf.len() {
            if Instant::now() > deadline {
                return Ok(0);
            }
            let n = self.device.read(&mut rxbuf[rxlen..])?;
            rxlen += n;
        }
        Ok(rxlen)
    }

    fn read_status(&mut self) -> Result<()> {
        let mut buf = [0u8; 2];
        let n = self.device.read(&mut buf)?;
        if n > 0 {
            Err(Error::MpsseUnknown(buf[0], buf[1]).into())
        } else {
            Ok(())
        }
    }

    /// Execute a slice of `commands` on the target FTDI device.
    pub fn execute(&mut self, commands: &mut [Command]) -> Result<()> {
        // Build up a transmit buffer from the slice of commands.
        // The buffer contains both MPSSE opcodes and data.
        // Calculate the size of the receive buffer needed.
        let mut txbuf = Vec::new();
        let mut rxlen = 0;
        for command in commands.iter() {
            command.extend(&mut txbuf)?;
            rxlen += command.response_length();
        }

        // Transmit and receive simultaneously.
        // When the transmit buffer is exhausted, we issue a read with a
        // timeout to consume the available data or return a timeout error.
        let mut rxbuf = vec![0u8; rxlen];
        let mut txlen = 0;
        rxlen = 0;
        while txlen < txbuf.len() || rxlen < rxbuf.len() {
            if txlen < txbuf.len() {
                let n = self.device.write(&txbuf[txlen..])?;
                txlen += n;
            }
            if rxlen < rxbuf.len() {
                let n = if txlen < txbuf.len() {
                    self.device.read(&mut rxbuf[rxlen..])?
                } else {
                    self.read_timeout(&mut rxbuf[rxlen..], self.receive_timeout)?
                };
                rxlen += n;
            }
        }

        // Redistribute the received data into the buffers specified in
        // the slice of commands.
        let mut pos = 0usize;
        for command in commands.iter_mut() {
            let len = command.response_length();
            match command {
                Command::ReadData(_, buf) => {
                    buf.copy_from_slice(&rxbuf[pos..(pos + len)]);
                }
                Command::TransactData(_, _, _, buf) => {
                    buf.copy_from_slice(&rxbuf[pos..(pos + len)]);
                }
                Command::GetLowGpio(value) => {
                    **value = rxbuf[pos];
                }
                _ => {}
            }
            pos += len;
        }

        // Check for errors
        self.read_status()
    }

    /// Get the GPIO state on the target FTDI device.
    pub fn gpio_get(&mut self) -> Result<u8> {
        let mut value = 0u8;
        let command = Command::GetLowGpio(&mut value);
        self.execute(&mut [command])?;
        log::debug!("gpio_get {:x}", value);
        self.gpio_value = value;
        Ok(value)
    }

    /// Set the GPIO state of an individual pin on the FTDI device.
    pub fn gpio_set(&mut self, pin: u8, high: bool) -> Result<()> {
        let dir = GpioDirection::from_bits(1 << pin).ok_or(GpioError::InvalidPinNumber(pin))?;
        if (dir & self.gpio_direction).bits() == 0 {
            return Err(GpioError::InvalidPinMode(pin).into());
        }
        if high {
            self.gpio_value |= 1 << pin;
        } else {
            self.gpio_value &= !(1 << pin);
        }
        log::debug!(
            "gpio_set dir={:x} value={:x}",
            self.gpio_direction.bits(),
            self.gpio_value
        );
        let command = Command::SetLowGpio(self.gpio_direction, self.gpio_value);
        self.execute(&mut [command])
    }

    /// Set the direction of an individual pin on the FTDI device.
    pub fn gpio_set_direction(&mut self, pin: u8, output: bool) -> Result<()> {
        let direction =
            GpioDirection::from_bits(1 << pin).ok_or(GpioError::InvalidPinNumber(pin))?;
        if output {
            self.gpio_direction |= direction;
        } else {
            self.gpio_direction &= direction;
        }
        // Perform a read to immediately synchronize the direction to the device.
        let _ = self.gpio_get()?;
        Ok(())
    }

    /// Set the clock frequency for serial opertions on the FTDI device.
    pub fn set_clock_frequency(&mut self, frequency: u32) -> Result<()> {
        let base = self.max_clock_frequency;
        let divisor = base / frequency - 1;
        let actual = base / (divisor + 1);
        log::debug!(
            "mpsse: requested clock frequency {}.  actual={}",
            frequency,
            actual
        );
        self.execute(&mut [Command::SetClockDivisor(divisor as u16)])?;
        self.clock_frequency = actual;
        Ok(())
    }

    /// Send an invalid command to the FTDI device (this is typically used in a debugging
    /// context to ensure synchronization with the FTDI device).
    pub fn invalid_command(&mut self) -> Result<()> {
        self.execute(&mut [Command::InvalidCommand])
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    // Checks the read/write opcodes generated by DataShiftOptions.
    fn test_data_shift_options() {
        let opt = DataShiftOptions {
            read_clock_edge: ClockEdge::Rising,
            read_data: true,
            ..Default::default()
        };
        assert_eq!(opt.as_opcode(), 0x20);

        let opt = DataShiftOptions {
            read_clock_edge: ClockEdge::Falling,
            read_data: true,
            ..Default::default()
        };
        assert_eq!(opt.as_opcode(), 0x24);

        let opt = DataShiftOptions {
            read_clock_edge: ClockEdge::Falling,
            read_data: true,
            bit_direction: BitDirection::LsbFirst,
            ..Default::default()
        };
        assert_eq!(opt.as_opcode(), 0x2c);

        let opt = DataShiftOptions {
            write_clock_edge: ClockEdge::Rising,
            write_data: true,
            ..Default::default()
        };
        assert_eq!(opt.as_opcode(), 0x10);

        let opt = DataShiftOptions {
            write_clock_edge: ClockEdge::Falling,
            write_data: true,
            ..Default::default()
        };
        assert_eq!(opt.as_opcode(), 0x11);

        let opt = DataShiftOptions {
            read_clock_edge: ClockEdge::Rising,
            write_clock_edge: ClockEdge::Falling,
            read_data: true,
            write_data: true,
            ..Default::default()
        };
        assert_eq!(opt.as_opcode(), 0x31);
    }

    #[test]
    // Checks the construction of a ReadData command.
    fn test_command_read_data() -> Result<()> {
        let mut read_buf = [0u8; 8];
        let opt = DataShiftOptions {
            read_clock_edge: ClockEdge::Rising,
            read_data: true,
            ..Default::default()
        };

        let command = Command::ReadData(opt, &mut read_buf);
        assert_eq!(command.response_length(), 8);

        let mut low_level_command = Vec::new();
        command.extend(&mut low_level_command)?;
        // opcode followed by little endian representation of (length-1).
        assert_eq!(&low_level_command, &[0x20, 7, 0]);
        Ok(())
    }

    #[test]
    // Checks the construction of a WriteData command.
    fn test_command_write_data() -> Result<()> {
        let write_buf = [1u8, 2, 3, 4, 5];
        let opt = DataShiftOptions {
            write_clock_edge: ClockEdge::Falling,
            write_data: true,
            ..Default::default()
        };

        let command = Command::WriteData(opt, &write_buf);
        assert_eq!(command.response_length(), 0);

        let mut low_level_command = Vec::new();
        command.extend(&mut low_level_command)?;
        // opcode followed by little endian representation of (length-1) followed by data.
        assert_eq!(&low_level_command, &[0x11, 4, 0, 1, 2, 3, 4, 5]);
        Ok(())
    }

    #[test]
    // Checks the construction of a TransactData command.
    fn test_command_transact_data() -> Result<()> {
        let write_buf = [1u8, 2, 3, 4, 5];
        let write_opt = DataShiftOptions {
            write_clock_edge: ClockEdge::Falling,
            write_data: true,
            ..Default::default()
        };
        let mut read_buf = [0u8; 5];
        let read_opt = DataShiftOptions {
            read_clock_edge: ClockEdge::Rising,
            read_data: true,
            ..Default::default()
        };

        let command = Command::TransactData(write_opt, &write_buf, read_opt, &mut read_buf);
        assert_eq!(command.response_length(), 5);

        let mut low_level_command = Vec::new();
        command.extend(&mut low_level_command)?;
        // opcode followed by little endian representation of (length-1) followed by data.
        assert_eq!(&low_level_command, &[0x31, 4, 0, 1, 2, 3, 4, 5]);
        Ok(())
    }

    #[test]
    // Checks the construction of a SetLowGpio command.
    fn test_set_gpio() -> Result<()> {
        let direction = GpioDirection::OUT_0 | GpioDirection::OUT_1;
        let command = Command::SetLowGpio(direction, 0x5a);
        assert_eq!(command.response_length(), 0);

        let mut low_level_command = Vec::new();
        command.extend(&mut low_level_command)?;
        // opcode followed by gpio value followed by gpio direction.
        assert_eq!(&low_level_command, &[0x80, 0x5a, 0x3]);
        Ok(())
    }

    #[test]
    // Checks the construction of a GetLowGpio command.
    fn test_get_gpio() -> Result<()> {
        let mut value = 0u8;
        let command = Command::GetLowGpio(&mut value);
        assert_eq!(command.response_length(), 1);

        let mut low_level_command = Vec::new();
        command.extend(&mut low_level_command)?;
        // opcode only.
        assert_eq!(&low_level_command, &[0x81]);
        Ok(())
    }

    #[test]
    // Checks the construction of a SetClockDivisor command.
    fn test_set_clock_divisor() -> Result<()> {
        let command = Command::SetClockDivisor(0x1234);
        assert_eq!(command.response_length(), 0);

        let mut low_level_command = Vec::new();
        command.extend(&mut low_level_command)?;
        // opcode followed by the little-endian representation of the divisor.
        assert_eq!(&low_level_command, &[0x86, 0x34, 0x12]);
        Ok(())
    }

    #[test]
    // Checks the construction of a DisableDivBy5 command.
    fn test_disable_div_by_five() -> Result<()> {
        let command = Command::DisableDivBy5;
        assert_eq!(command.response_length(), 0);

        let mut low_level_command = Vec::new();
        command.extend(&mut low_level_command)?;
        // opcode only.
        assert_eq!(&low_level_command, &[0x8a]);
        Ok(())
    }

    #[test]
    // Checks the construction of an InvalidCommand command.
    fn test_invalid_command() -> Result<()> {
        let command = Command::InvalidCommand;
        assert_eq!(command.response_length(), 0);

        let mut low_level_command = Vec::new();
        command.extend(&mut low_level_command)?;
        // opcode only.
        assert_eq!(&low_level_command, &[0xaa]);
        Ok(())
    }
}