1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
// Copyright lowRISC contributors (OpenTitan project).
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0

use anyhow::{bail, ensure, Result};
use rusb::{Direction, Recipient, RequestType};
use std::cell::Cell;
use std::mem::size_of;
use std::rc::Rc;
use std::time::Duration;
use zerocopy::{AsBytes, FromBytes, FromZeroes};

use crate::io::eeprom;
use crate::io::gpio::GpioPin;
use crate::io::spi::{
    AssertChipSelect, MaxSizes, SpiError, Target, TargetChipDeassert, Transfer, TransferMode,
};
use crate::transport::hyperdebug::{BulkInterface, Inner};
use crate::transport::TransportError;

pub struct HyperdebugSpiTarget {
    inner: Rc<Inner>,
    interface: BulkInterface,
    target_enable_cmd: u8,
    target_idx: u8,
    feature_bitmap: u16,
    max_sizes: MaxSizes,
    cs_asserted_count: Cell<u32>,
}

/// HyperDebug will wait up to one second for EEPROM chip to report "ready" after a write
/// operation, sending a response if it gives up.  Make sure that we leave a little time for USB
/// latency, so that we will receive the "giving up" response, rather than timeout ourselves in
/// opentitanlib.
const TRANSFER_START_TIMEOUT: Duration = Duration::from_millis(1100);

const USB_SPI_PKT_ID_CMD_GET_USB_SPI_CONFIG: u16 = 0;
const USB_SPI_PKT_ID_RSP_USB_SPI_CONFIG: u16 = 1;
const USB_SPI_PKT_ID_CMD_TRANSFER_START: u16 = 2;
const USB_SPI_PKT_ID_CMD_TRANSFER_CONTINUE: u16 = 3;
//const USB_SPI_PKT_ID_CMD_RESTART_RESPONSE: u16 = 4;
const USB_SPI_PKT_ID_RSP_TRANSFER_START: u16 = 5;
const USB_SPI_PKT_ID_RSP_TRANSFER_CONTINUE: u16 = 6;
const USB_SPI_PKT_ID_CMD_CHIP_SELECT: u16 = 7;
const USB_SPI_PKT_ID_RSP_CHIP_SELECT: u16 = 8;
const USB_SPI_PKT_ID_CMD_EEPROM_TRANSFER_START: u16 = 9;

pub const USB_SPI_REQ_ENABLE: u8 = 0;
//const USB_SPI_REQ_DISABLE: u8 = 1;
pub const USB_SPI_REQ_ENABLE_AP: u8 = 2;
pub const USB_SPI_REQ_ENABLE_EC: u8 = 3;

const USB_MAX_SIZE: usize = 64;
const FULL_DUPLEX: usize = 65535;

const FEATURE_BIT_FULL_DUPLEX: u16 = 0x0001;
const FEATURE_BIT_EEPROM: u16 = 0x0002;
const FEATURE_BIT_EEPROM_DUAL: u16 = 0x0004;
const FEATURE_BIT_EEPROM_QUAD: u16 = 0x0008;
const FEATURE_BIT_EEPROM_OCTO: u16 = 0x0010;
const FEATURE_BIT_EEPROM_DTR: u16 = 0x0020;
const FEATURE_BIT_EEPROM_DOUBLE_BUFFER: u16 = 0x0040;

const EEPROM_FLAGS_OPCODE_LEN_POS: u8 = 0;
const EEPROM_FLAGS_ADDR_LEN_POS: u8 = 2;
const EEPROM_FLAGS_MODE_111: u32 = 0x00000000;
const EEPROM_FLAGS_MODE_11N: u32 = 0x00000020;
const EEPROM_FLAGS_MODE_1NN: u32 = 0x00000040;
const EEPROM_FLAGS_MODE_NNN: u32 = 0x00000060;
const EEPROM_FLAGS_WIDTH_1WIRE: u32 = 0x00000000;
const EEPROM_FLAGS_WIDTH_2WIRE: u32 = 0x00000080;
const EEPROM_FLAGS_WIDTH_4WIRE: u32 = 0x00000100;
const EEPROM_FLAGS_WIDTH_8WIRE: u32 = 0x00000180;
const EEPROM_FLAGS_DTR: u32 = 0x00000200;
const EEPROM_FLAGS_DUMMY_CYCLES_POS: u8 = 10;
const EEPROM_FLAGS_WRITE_ENABLE: u32 = 0x10000000;
const EEPROM_FLAGS_POLL_BUSY: u32 = 0x20000000;
const EEPROM_FLAGS_DOUBLE_BUFFER: u32 = 0x40000000;
const EEPROM_FLAGS_WRITE: u32 = 0x80000000;

const STATUS_SUCCESS: u16 = 0x0000;
const STATUS_TIMEOUT: u16 = 0x0001;
const STATUS_BUSY: u16 = 0x0002;
const STATUS_WRITE_COUNT_INVALID: u16 = 0x0003;
const STATUS_READ_COUNT_INVALID: u16 = 0x0004;
const STATUS_DISABLED: u16 = 0x0005;
const STATUS_RX_BAD_DATA_INDEX: u16 = 0x0006;
const STATUS_RX_DATA_OVERFLOW: u16 = 0x0007;
const STATUS_RX_UNEXPECTED_PACKET: u16 = 0x0008;
const STATUS_UNSUPPORTED_FULL_DUPLEX: u16 = 0x0009;
const STATUS_UNSUPPORTED_FLASH_MODE: u16 = 0x000A;
const STATUS_STREAMING_FIRST_SUCCESS: u16 = 0x000B;

fn status_code_description(status_code: u16) -> String {
    match status_code {
        STATUS_SUCCESS => "success",
        STATUS_TIMEOUT => "timeout",
        STATUS_BUSY => "busy",
        STATUS_WRITE_COUNT_INVALID => "protocol corruption (WRITE_COUNT_INVALID)",
        STATUS_READ_COUNT_INVALID => "protocol corruption (READ_COUNT_INVALID)",
        STATUS_DISABLED => "port not enabled",
        STATUS_RX_BAD_DATA_INDEX => "protocol corruption (RX_BAD_DATA_INDEX)",
        STATUS_RX_DATA_OVERFLOW => "protocol corruption (RX_DATA_OVERFLOW)",
        STATUS_RX_UNEXPECTED_PACKET => "protocol corruption (RX_UNEXPECTED_PACKET)",
        STATUS_UNSUPPORTED_FULL_DUPLEX => "full duplex not supported",
        STATUS_UNSUPPORTED_FLASH_MODE => "requested flash mode not supported",
        _ => {
            return format!("unknown error {:04x}", status_code);
        }
    }
    .to_string()
}

#[derive(AsBytes, FromBytes, FromZeroes, Debug, Default)]
#[repr(C)]
struct RspUsbSpiConfig {
    packet_id: u16,
    max_write_chunk: u16,
    max_read_chunk: u16,
    feature_bitmap: u16,
}

#[derive(AsBytes, FromBytes, FromZeroes, Debug)]
#[repr(C)]
struct CmdTransferStart {
    packet_id: u16,
    write_count: u16,
    read_count: u16,
    data: [u8; USB_MAX_SIZE - 6],
}
impl CmdTransferStart {
    fn new() -> Self {
        Self {
            packet_id: USB_SPI_PKT_ID_CMD_TRANSFER_START,
            write_count: 0,
            read_count: 0,
            data: [0; USB_MAX_SIZE - 6],
        }
    }
}

#[derive(AsBytes, FromBytes, FromZeroes, Debug)]
#[repr(C)]
struct CmdEepromTransferStart {
    packet_id: u16,
    count: u16,
    flags: u32,
    data: [u8; USB_MAX_SIZE - 8],
}
impl CmdEepromTransferStart {
    fn new() -> Self {
        Self {
            packet_id: USB_SPI_PKT_ID_CMD_EEPROM_TRANSFER_START,
            count: 0,
            flags: 0,
            data: [0; USB_MAX_SIZE - 8],
        }
    }
}

#[derive(AsBytes, FromBytes, FromZeroes, Debug)]
#[repr(C)]
struct CmdTransferContinue {
    packet_id: u16,
    data_index: u16,
    data: [u8; USB_MAX_SIZE - 4],
}
impl CmdTransferContinue {
    fn new() -> Self {
        Self {
            packet_id: USB_SPI_PKT_ID_CMD_TRANSFER_CONTINUE,
            data_index: 0,
            data: [0; USB_MAX_SIZE - 4],
        }
    }
}

#[derive(AsBytes, FromBytes, FromZeroes, Debug)]
#[repr(C)]
struct RspTransferStart {
    packet_id: u16,
    status_code: u16,
    data: [u8; USB_MAX_SIZE - 4],
}
impl RspTransferStart {
    fn new() -> Self {
        Self {
            packet_id: 0,
            status_code: 0,
            data: [0; USB_MAX_SIZE - 4],
        }
    }
}

#[derive(AsBytes, FromBytes, FromZeroes, Debug)]
#[repr(C)]
struct RspTransferContinue {
    packet_id: u16,
    data_index: u16,
    data: [u8; USB_MAX_SIZE - 4],
}
impl RspTransferContinue {
    fn new() -> Self {
        Self {
            packet_id: 0,
            data_index: 0,
            data: [0; USB_MAX_SIZE - 4],
        }
    }
}

#[derive(AsBytes, FromBytes, FromZeroes, Debug)]
#[repr(C)]
struct CmdChipSelect {
    packet_id: u16,
    flags: u16,
}
impl CmdChipSelect {
    fn new(assert_chip_select: bool) -> Self {
        Self {
            packet_id: USB_SPI_PKT_ID_CMD_CHIP_SELECT,
            flags: u16::from(assert_chip_select),
        }
    }
}

#[derive(AsBytes, FromBytes, FromZeroes, Debug, Default)]
#[repr(C)]
struct RspChipSelect {
    packet_id: u16,
    status_code: u16,
}
impl RspChipSelect {
    fn new() -> Self {
        Self {
            packet_id: 0,
            status_code: 0,
        }
    }
}

enum StreamState<'a> {
    NoPending,
    PendingWrite,
    PendingRead(&'a mut [u8]),
}

impl HyperdebugSpiTarget {
    pub fn open(
        inner: &Rc<Inner>,
        spi_interface: &BulkInterface,
        enable_cmd: u8,
        idx: u8,
    ) -> Result<Self> {
        let mut usb_handle = inner.usb_device.borrow_mut();

        // Tell HyperDebug to enable SPI bridge, and to address particular SPI device.
        inner.selected_spi.set(idx);
        usb_handle.write_control(
            rusb::request_type(Direction::Out, RequestType::Vendor, Recipient::Interface),
            enable_cmd,
            idx as u16,
            spi_interface.interface as u16,
            &[],
        )?;

        // Exclusively claim SPI interface, preparing for bulk transfers.
        usb_handle.claim_interface(spi_interface.interface)?;

        // Initial bulk request/response to query capabilities.
        usb_handle.write_bulk(
            spi_interface.out_endpoint,
            &USB_SPI_PKT_ID_CMD_GET_USB_SPI_CONFIG.to_le_bytes(),
        )?;
        let mut resp: RspUsbSpiConfig = Default::default();
        let rc = usb_handle.read_bulk(spi_interface.in_endpoint, resp.as_bytes_mut())?;
        ensure!(
            rc == size_of::<RspUsbSpiConfig>(),
            TransportError::CommunicationError(
                "Unrecognized reponse to GET_USB_SPI_CONFIG".to_string()
            )
        );
        ensure!(
            resp.packet_id == USB_SPI_PKT_ID_RSP_USB_SPI_CONFIG,
            TransportError::CommunicationError(
                "Unrecognized reponse to GET_USB_SPI_CONFIG".to_string()
            )
        );

        Ok(Self {
            inner: Rc::clone(inner),
            interface: *spi_interface,
            target_enable_cmd: enable_cmd,
            target_idx: idx,
            feature_bitmap: resp.feature_bitmap,
            max_sizes: MaxSizes {
                read: resp.max_read_chunk as usize,
                write: resp.max_write_chunk as usize,
            },
            cs_asserted_count: Cell::new(0),
        })
    }

    /// Instruct HyperDebug device which SPI bus subsequent transactions should be forwarded to.
    fn select_my_spi_bus(&self) -> Result<()> {
        if self.inner.selected_spi.get() != self.target_idx {
            self.inner.selected_spi.set(self.target_idx);
            self.inner.usb_device.borrow().write_control(
                rusb::request_type(Direction::Out, RequestType::Vendor, Recipient::Interface),
                self.target_enable_cmd,
                self.target_idx as u16,
                self.interface.interface as u16,
                &[],
            )?;
        }
        Ok(())
    }

    /// Transmit data for a single SPI operation, using one or more USB packets.
    fn transmit(&self, wbuf: &[u8], rbuf_len: usize) -> Result<()> {
        let mut req = CmdTransferStart::new();
        req.write_count = wbuf.len() as u16;
        req.read_count = rbuf_len as u16;
        let databytes = std::cmp::min(USB_MAX_SIZE - 6, wbuf.len());
        req.data[0..databytes].clone_from_slice(&wbuf[0..databytes]);
        self.usb_write_bulk(&req.as_bytes()[0..6 + databytes])?;
        let mut index = databytes;

        while index < wbuf.len() {
            let mut req = CmdTransferContinue::new();
            req.data_index = index as u16;
            let databytes = std::cmp::min(USB_MAX_SIZE - 4, wbuf.len() - index);
            req.data[0..databytes].clone_from_slice(&wbuf[index..index + databytes]);
            self.usb_write_bulk(&req.as_bytes()[0..4 + databytes])?;
            index += databytes;
        }
        Ok(())
    }

    /// Receive data for a single SPI operation, using one or more USB packets.
    fn receive(&self, rbuf: &mut [u8]) -> Result<()> {
        let mut resp = RspTransferStart::new();
        let bytecount = self.usb_read_bulk_timeout(resp.as_bytes_mut(), TRANSFER_START_TIMEOUT)?;
        ensure!(
            bytecount >= 4,
            TransportError::CommunicationError("Short reponse to TRANSFER_START".to_string())
        );
        ensure!(
            resp.packet_id == USB_SPI_PKT_ID_RSP_TRANSFER_START,
            TransportError::CommunicationError(format!(
                "Unrecognized reponse to TRANSFER_START: {}",
                resp.packet_id
            ))
        );
        ensure!(
            resp.status_code == STATUS_SUCCESS,
            TransportError::CommunicationError(format!(
                "SPI error: {}",
                status_code_description(resp.status_code)
            ))
        );
        let databytes = bytecount - 4;
        rbuf[0..databytes].clone_from_slice(&resp.data[0..databytes]);
        let mut index = databytes;
        while index < rbuf.len() {
            let mut resp = RspTransferContinue::new();
            let bytecount = self.usb_read_bulk(resp.as_bytes_mut())?;
            ensure!(
                bytecount > 4,
                TransportError::CommunicationError(
                    "Short reponse to TRANSFER_CONTINUE".to_string()
                )
            );
            ensure!(
                resp.packet_id == USB_SPI_PKT_ID_RSP_TRANSFER_CONTINUE,
                TransportError::CommunicationError(format!(
                    "Unrecognized reponse to TRANSFER_CONTINUE: {}",
                    resp.packet_id
                ))
            );
            ensure!(
                resp.data_index == index as u16,
                TransportError::CommunicationError(
                    "Unexpected byte index in reponse to TRANSFER_START".to_string()
                )
            );
            let databytes = bytecount - 4;
            rbuf[index..index + databytes].clone_from_slice(&resp.data[0..databytes]);
            index += databytes;
        }
        Ok(())
    }

    fn receive_first_streaming(&self) -> Result<()> {
        let mut resp = RspTransferStart::new();
        let bytecount = self.usb_read_bulk(resp.as_bytes_mut())?;
        ensure!(
            bytecount >= 4,
            TransportError::CommunicationError("Short reponse to TRANSFER_START".to_string())
        );
        ensure!(
            resp.packet_id == USB_SPI_PKT_ID_RSP_TRANSFER_START,
            TransportError::CommunicationError(format!(
                "Unrecognized reponse to TRANSFER_START: {}",
                resp.packet_id
            ))
        );
        ensure!(
            resp.status_code == STATUS_STREAMING_FIRST_SUCCESS,
            TransportError::CommunicationError(format!(
                "SPI error: {}, expected streaming response",
                status_code_description(resp.status_code)
            ))
        );
        Ok(())
    }

    fn verify_width(&self, requested_width: eeprom::DataWidth) -> Result<()> {
        match requested_width {
            eeprom::DataWidth::Single => (),
            eeprom::DataWidth::Dual => ensure!(
                self.feature_bitmap & FEATURE_BIT_EEPROM_DUAL != 0,
                SpiError::InvalidDataWidth(requested_width)
            ),
            eeprom::DataWidth::Quad => ensure!(
                self.feature_bitmap & FEATURE_BIT_EEPROM_QUAD != 0,
                SpiError::InvalidDataWidth(requested_width)
            ),
            eeprom::DataWidth::Octo => ensure!(
                self.feature_bitmap & FEATURE_BIT_EEPROM_OCTO != 0,
                SpiError::InvalidDataWidth(requested_width)
            ),
        }
        Ok(())
    }

    /// Transmit data for a single SPI operation, using one or more USB packets.
    fn eeprom_transmit<'a>(
        &self,
        write_enable: Option<&eeprom::Cmd>,
        cmd: &eeprom::Cmd,
        wbuf: &[u8],
        rbuf: &'a mut [u8],
        wait_for_busy_clear: bool,
        stream_state: StreamState,
    ) -> Result<StreamState<'a>> {
        let double_buffer = self.feature_bitmap & FEATURE_BIT_EEPROM_DOUBLE_BUFFER != 0;

        self.verify_width(cmd.get_width())?;

        let mut req = CmdEepromTransferStart::new();
        let mut idx = 0;
        if rbuf.is_empty() {
            req.flags |= EEPROM_FLAGS_WRITE;
            req.count = wbuf.len() as u16;
        } else {
            req.count = rbuf.len() as u16;
        }

        req.flags |= match cmd.get_switch() {
            eeprom::Switch::Mode111 => EEPROM_FLAGS_MODE_111,
            eeprom::Switch::Mode11N => EEPROM_FLAGS_MODE_11N,
            eeprom::Switch::Mode1NN => EEPROM_FLAGS_MODE_1NN,
            eeprom::Switch::ModeNNN => EEPROM_FLAGS_MODE_NNN,
        };
        req.flags |= match cmd.get_width() {
            eeprom::DataWidth::Single => EEPROM_FLAGS_WIDTH_1WIRE,
            eeprom::DataWidth::Dual => EEPROM_FLAGS_WIDTH_2WIRE,
            eeprom::DataWidth::Quad => EEPROM_FLAGS_WIDTH_4WIRE,
            eeprom::DataWidth::Octo => EEPROM_FLAGS_WIDTH_8WIRE,
        };
        if cmd.get_double_transfer_rate() {
            ensure!(
                self.feature_bitmap & FEATURE_BIT_EEPROM_DTR != 0,
                SpiError::InvalidDoubleTransferRate()
            );
            req.flags |= EEPROM_FLAGS_DTR;
        }

        // Command bytes
        req.flags |= (cmd.get_opcode_len() as u32) << EEPROM_FLAGS_OPCODE_LEN_POS;

        if double_buffer {
            req.flags |= EEPROM_FLAGS_DOUBLE_BUFFER;
        }
        if let Some(pre_cmd) = write_enable {
            req.flags |= EEPROM_FLAGS_WRITE_ENABLE;
            let opcode_bytes = pre_cmd.get_opcode();
            if opcode_bytes.len() != 1 {
                panic!("Illegal write enable sequence");
            }
            req.data[idx..idx + opcode_bytes.len()].clone_from_slice(opcode_bytes);
            idx += opcode_bytes.len();
        }
        if wait_for_busy_clear {
            req.flags |= EEPROM_FLAGS_POLL_BUSY;
        }
        let opcode_bytes = cmd.get_opcode();
        let address_bytes =
            &cmd.get_address().to_be_bytes()[(4 - cmd.get_address_len()) as usize..];

        req.data[idx..idx + opcode_bytes.len()].clone_from_slice(opcode_bytes);
        idx += opcode_bytes.len();
        let mut addr_len = cmd.get_address_len();
        req.data[idx..idx + address_bytes.len()].clone_from_slice(address_bytes);
        idx += address_bytes.len();
        if cmd.get_switch() == eeprom::Switch::Mode111
            && cmd.get_dummy_cycles() % 8 == 0
            && addr_len + cmd.get_dummy_cycles() / 8 <= 7
        {
            // In cases when the number of dummy cycles is divisible by 8, stuff a number of
            // zero bytes after the address.  This allows debuggers without native support for
            // an arbitrary number of dummy cycles to perform the transaction.
            addr_len += cmd.get_dummy_cycles() / 8;
            for _ in 0..cmd.get_dummy_cycles() / 8 {
                req.data[idx] = 0x00;
                idx += 1;
            }
        } else if cmd.get_dummy_cycles() < 32 {
            req.flags |= (cmd.get_dummy_cycles() as u32) << EEPROM_FLAGS_DUMMY_CYCLES_POS
        } else {
            bail!(SpiError::InvalidDummyCycles(cmd.get_dummy_cycles()));
        }
        req.flags |= (addr_len as u32) << EEPROM_FLAGS_ADDR_LEN_POS;

        let data_start_offset = idx;
        // Optional write data bytes
        let databytes = std::cmp::min(USB_MAX_SIZE - 8 - data_start_offset, wbuf.len());
        req.data[data_start_offset..data_start_offset + databytes]
            .clone_from_slice(&wbuf[0..databytes]);
        self.usb_write_bulk(&req.as_bytes()[0..8 + data_start_offset + databytes])?;
        let mut index = databytes;

        while index < wbuf.len() {
            let mut req = CmdTransferContinue::new();
            req.data_index = index as u16;
            let databytes = std::cmp::min(USB_MAX_SIZE - 4, wbuf.len() - index);
            req.data[0..databytes].clone_from_slice(&wbuf[index..index + databytes]);
            self.usb_write_bulk(&req.as_bytes()[0..4 + databytes])?;
            index += databytes;
        }

        let next_stream_state = if rbuf.is_empty() {
            StreamState::PendingWrite
        } else {
            StreamState::PendingRead(rbuf)
        };
        if double_buffer {
            self.receive_streamed_data(stream_state)?;
            Ok(next_stream_state)
        } else {
            self.receive_streamed_data(next_stream_state)?;
            Ok(StreamState::NoPending)
        }
    }

    fn receive_streamed_data(&self, stream_state: StreamState) -> Result<()> {
        match stream_state {
            StreamState::NoPending => self.receive_first_streaming(),
            StreamState::PendingWrite => self.receive(&mut []),
            StreamState::PendingRead(rbuf) => self.receive(rbuf),
        }
    }

    fn eeprom_transmit_get_last_streamed_data(&self) -> Result<()> {
        let mut req = CmdEepromTransferStart::new();
        req.count = 0;
        req.flags = EEPROM_FLAGS_DOUBLE_BUFFER;
        self.usb_write_bulk(&req.as_bytes()[0..8])
    }

    fn get_last_streamed_data(&self, stream_state: StreamState) -> Result<()> {
        match stream_state {
            StreamState::NoPending => Ok(()),
            StreamState::PendingWrite => {
                self.eeprom_transmit_get_last_streamed_data()?;
                self.receive(&mut [])
            }
            StreamState::PendingRead(rbuf) => {
                self.eeprom_transmit_get_last_streamed_data()?;
                self.receive(rbuf)
            }
        }
    }

    /// Request assertion or deassertion of chip select
    fn do_assert_cs(&self, assert: bool) -> Result<()> {
        let mut count = self.cs_asserted_count.get();
        if assert {
            if count == 0 {
                self._do_assert_cs(assert)?;
            }
            count += 1;
        } else {
            if count == 1 {
                self._do_assert_cs(assert)?;
            }
            count -= 1;
        }
        self.cs_asserted_count.set(count);
        Ok(())
    }

    fn _do_assert_cs(&self, assert: bool) -> Result<()> {
        let req = CmdChipSelect::new(assert);
        self.usb_write_bulk(req.as_bytes())?;

        let mut resp = RspChipSelect::new();
        let bytecount = self.usb_read_bulk(resp.as_bytes_mut())?;
        ensure!(
            bytecount >= 4,
            TransportError::CommunicationError("Unrecognized reponse to CHIP_SELECT".to_string())
        );
        ensure!(
            resp.packet_id == USB_SPI_PKT_ID_RSP_CHIP_SELECT,
            TransportError::CommunicationError("Unrecognized reponse to CHIP_SELECT".to_string())
        );
        ensure!(
            resp.status_code == STATUS_SUCCESS,
            TransportError::CommunicationError(format!("SPI error: {}", resp.status_code))
        );
        Ok(())
    }

    /// Send one USB packet.
    fn usb_write_bulk(&self, buf: &[u8]) -> Result<()> {
        self.inner
            .usb_device
            .borrow()
            .write_bulk(self.interface.out_endpoint, buf)?;
        Ok(())
    }

    /// Receive one USB packet.
    fn usb_read_bulk(&self, buf: &mut [u8]) -> Result<usize> {
        self.inner
            .usb_device
            .borrow()
            .read_bulk(self.interface.in_endpoint, buf)
    }

    /// Receive one USB packet, with particular timeout.
    fn usb_read_bulk_timeout(&self, buf: &mut [u8], timeout: Duration) -> Result<usize> {
        self.inner
            .usb_device
            .borrow()
            .read_bulk_timeout(self.interface.in_endpoint, buf, timeout)
    }
}

impl Target for HyperdebugSpiTarget {
    fn get_transfer_mode(&self) -> Result<TransferMode> {
        Ok(TransferMode::Mode0)
    }
    fn set_transfer_mode(&self, _mode: TransferMode) -> Result<()> {
        todo!();
    }

    fn get_bits_per_word(&self) -> Result<u32> {
        Ok(8)
    }
    fn set_bits_per_word(&self, bits_per_word: u32) -> Result<()> {
        match bits_per_word {
            8 => Ok(()),
            _ => Err(SpiError::InvalidWordSize(bits_per_word).into()),
        }
    }

    fn get_max_speed(&self) -> Result<u32> {
        let mut buf = String::new();
        let captures = self.inner.cmd_one_line_output_match(
            &format!("spi info {}", &self.target_idx),
            &super::SPI_REGEX,
            &mut buf,
        )?;
        Ok(captures.get(3).unwrap().as_str().parse().unwrap())
    }
    fn set_max_speed(&self, frequency: u32) -> Result<()> {
        self.inner
            .cmd_no_output(&format!("spi set speed {} {}", &self.target_idx, frequency))
    }

    fn supports_bidirectional_transfer(&self) -> Result<bool> {
        Ok((self.feature_bitmap & FEATURE_BIT_FULL_DUPLEX) != 0)
    }

    fn set_pins(
        &self,
        serial_clock: Option<&Rc<dyn GpioPin>>,
        host_out_device_in: Option<&Rc<dyn GpioPin>>,
        host_in_device_out: Option<&Rc<dyn GpioPin>>,
        chip_select: Option<&Rc<dyn GpioPin>>,
    ) -> Result<()> {
        if serial_clock.is_some() || host_out_device_in.is_some() || host_in_device_out.is_some() {
            bail!(SpiError::InvalidPin);
        }
        if let Some(pin) = chip_select {
            self.inner.cmd_no_output(&format!(
                "spi set cs {} {}",
                &self.target_idx,
                pin.get_internal_pin_name().ok_or(SpiError::InvalidPin)?
            ))?;
        }
        Ok(())
    }

    fn get_max_transfer_count(&self) -> Result<usize> {
        // The protocol imposes no limits to the number of Transfers
        // in a transaction.
        Ok(usize::MAX)
    }

    fn get_max_transfer_sizes(&self) -> Result<MaxSizes> {
        Ok(self.max_sizes)
    }

    fn run_transaction(&self, transaction: &mut [Transfer]) -> Result<()> {
        let mut idx: usize = 0;
        self.select_my_spi_bus()?;

        // Simple cases involving using only a single USB command can be handled without explicit
        // embracing commands to hold CS asserted across a sequence of transfers, use that for
        // avoiding several USB roundtrips in the common cases.
        match transaction {
            [Transfer::Write(wbuf), Transfer::Read(rbuf)] => {
                // Hyperdebug can do SPI write followed by SPI read as a single USB
                // request/reply.  Take advantage of that by detecting pairs of
                // Transfer::Write followed by Transfer::Read.
                ensure!(
                    wbuf.len() <= self.max_sizes.write,
                    SpiError::InvalidDataLength(wbuf.len())
                );
                ensure!(
                    rbuf.len() <= self.max_sizes.read,
                    SpiError::InvalidDataLength(rbuf.len())
                );
                self.transmit(wbuf, rbuf.len())?;
                self.receive(rbuf)?;
                return Ok(());
            }
            [Transfer::Write(wbuf)] => {
                ensure!(
                    wbuf.len() <= self.max_sizes.write,
                    SpiError::InvalidDataLength(wbuf.len())
                );
                self.transmit(wbuf, 0)?;
                self.receive(&mut [])?;
                return Ok(());
            }
            [Transfer::Write(wbuf1), Transfer::Write(wbuf2)] => {
                if wbuf1.len() + wbuf2.len() <= self.max_sizes.write {
                    let mut combined_buf = vec![0u8; wbuf1.len() + wbuf2.len()];
                    combined_buf[..wbuf1.len()].clone_from_slice(wbuf1);
                    combined_buf[wbuf1.len()..].clone_from_slice(wbuf2);
                    self.transmit(&combined_buf, 0)?;
                    self.receive(&mut [])?;
                    return Ok(());
                }
            }
            [Transfer::Read(rbuf)] => {
                ensure!(
                    rbuf.len() <= self.max_sizes.read,
                    SpiError::InvalidDataLength(rbuf.len())
                );
                self.transmit(&[], rbuf.len())?;
                self.receive(rbuf)?;
                return Ok(());
            }
            _ => (),
        }

        // If control flow reaches this point, we have a more complicated sequence of operations,
        // and have to explicitly tell HyperDebug to keep the CS asserted while we issue each
        // command in turn.
        self.do_assert_cs(true)?;
        while idx < transaction.len() {
            match &mut transaction[idx..] {
                [Transfer::Write(wbuf), Transfer::Read(rbuf), ..] => {
                    ensure!(
                        wbuf.len() <= self.max_sizes.write,
                        SpiError::InvalidDataLength(wbuf.len())
                    );
                    ensure!(
                        rbuf.len() <= self.max_sizes.read,
                        SpiError::InvalidDataLength(rbuf.len())
                    );
                    self.transmit(wbuf, rbuf.len())?;
                    self.receive(rbuf)?;
                    // Skip two steps ahead, as two items were processed.
                    idx += 2;
                    continue;
                }
                [Transfer::Write(wbuf), ..] => {
                    ensure!(
                        wbuf.len() <= self.max_sizes.write,
                        SpiError::InvalidDataLength(wbuf.len())
                    );
                    self.transmit(wbuf, 0)?;
                    self.receive(&mut [])?;
                }
                [Transfer::Read(rbuf), ..] => {
                    ensure!(
                        rbuf.len() <= self.max_sizes.read,
                        SpiError::InvalidDataLength(rbuf.len())
                    );
                    self.transmit(&[], rbuf.len())?;
                    self.receive(rbuf)?;
                }
                [Transfer::Both(wbuf, rbuf), ..] => {
                    ensure!(
                        (self.feature_bitmap & FEATURE_BIT_FULL_DUPLEX) != 0,
                        TransportError::CommunicationError(
                            "HyperDebug does not support bidirectional SPI".to_string()
                        )
                    );
                    ensure!(
                        rbuf.len() == wbuf.len(),
                        SpiError::MismatchedDataLength(wbuf.len(), rbuf.len())
                    );
                    ensure!(
                        wbuf.len() <= self.max_sizes.read && wbuf.len() <= self.max_sizes.write,
                        SpiError::InvalidDataLength(wbuf.len())
                    );
                    self.transmit(wbuf, FULL_DUPLEX)?;
                    self.receive(rbuf)?;
                }
                [] => (),
            }
            idx += 1;
        }
        self.do_assert_cs(false)?;
        Ok(())
    }

    fn run_eeprom_transactions(&self, mut transactions: &mut [eeprom::Transaction]) -> Result<()> {
        if self.feature_bitmap & FEATURE_BIT_EEPROM == 0 {
            // Debugger hardware/firmware does not support multi-lane extensions, attempt to
            // perform operation using basic SPI read/write.
            return eeprom::default_run_eeprom_transactions(self, transactions);
        }
        self.select_my_spi_bus()?;
        let mut stream_state = StreamState::NoPending;
        loop {
            match transactions {
                [eeprom::Transaction::Command(pre_cmd), eeprom::Transaction::Write(cmd, wbuf), eeprom::Transaction::WaitForBusyClear, rest @ ..] =>
                {
                    if pre_cmd.get_opcode().len() == 1 {
                        stream_state = self.eeprom_transmit(
                            Some(pre_cmd), /* write_enable */
                            cmd,
                            wbuf,
                            &mut [],
                            true, /* wait_for_busy_clear */
                            stream_state,
                        )?;
                    } else {
                        stream_state =
                            self.eeprom_transmit(None, pre_cmd, &[], &mut [], false, stream_state)?;
                        stream_state = self.eeprom_transmit(
                            None, /* write_enable */
                            cmd,
                            wbuf,
                            &mut [],
                            true, /* wait_for_busy_clear */
                            stream_state,
                        )?;
                    }
                    transactions = rest;
                }
                [eeprom::Transaction::Command(cmd), rest @ ..] => {
                    stream_state =
                        self.eeprom_transmit(None, cmd, &[], &mut [], false, stream_state)?;
                    transactions = rest;
                }
                [eeprom::Transaction::Read(cmd, ref mut rbuf), rest @ ..] => {
                    stream_state =
                        self.eeprom_transmit(None, cmd, &[], rbuf, false, stream_state)?;
                    transactions = rest;
                }
                [eeprom::Transaction::Write(cmd, wbuf), eeprom::Transaction::WaitForBusyClear, rest @ ..] =>
                {
                    stream_state = self.eeprom_transmit(
                        None, /* write_enable */
                        cmd,
                        wbuf,
                        &mut [],
                        true, /* wait_for_busy_clear */
                        stream_state,
                    )?;
                    transactions = rest;
                }
                [eeprom::Transaction::Write(cmd, wbuf), rest @ ..] => {
                    stream_state =
                        self.eeprom_transmit(None, cmd, wbuf, &mut [], false, stream_state)?;
                    transactions = rest;
                }
                [eeprom::Transaction::WaitForBusyClear, rest @ ..] => {
                    self.get_last_streamed_data(stream_state)?;
                    let mut status = eeprom::STATUS_WIP;
                    while status & eeprom::STATUS_WIP != 0 {
                        self.run_transaction(&mut [
                            Transfer::Write(&[eeprom::READ_STATUS]),
                            Transfer::Read(std::slice::from_mut(&mut status)),
                        ])?;
                    }
                    stream_state = StreamState::NoPending;
                    transactions = rest;
                }
                [] => {
                    return self.get_last_streamed_data(stream_state);
                }
            }
        }
    }

    fn assert_cs(self: Rc<Self>) -> Result<AssertChipSelect> {
        self.do_assert_cs(true)?;
        Ok(AssertChipSelect::new(self))
    }
}

impl TargetChipDeassert for HyperdebugSpiTarget {
    fn deassert_cs(&self) {
        // We cannot propagate errors through `Drop::drop()`, so panic on any error.  (Logging
        // would be another option.)
        self.do_assert_cs(false)
            .expect("Error while deasserting CS");
    }
}