1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
// Copyright lowRISC contributors (OpenTitan project).
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
use anyhow::{bail, ensure, Result};
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use once_cell::sync::Lazy;
use regex::Regex;
use std::io::Cursor;
use std::mem::size_of;
use std::rc::Rc;
use std::time::Duration;
use zerocopy::{FromBytes, FromZeroes};
use crate::io::gpio::{
BitbangEntry, ClockNature, DacBangEntry, Edge, GpioBitbangOperation, GpioBitbanging,
GpioDacBangOperation, GpioError, GpioMonitoring, GpioPin, MonitoringEvent,
MonitoringReadResponse, MonitoringStartResponse, PinMode, PullMode,
};
use crate::transport::hyperdebug::{BulkInterface, Inner};
use crate::transport::TransportError;
pub struct HyperdebugGpioPin {
inner: Rc<Inner>,
pinname: String,
}
impl HyperdebugGpioPin {
pub fn open(inner: &Rc<Inner>, pinname: &str) -> Result<Self> {
let result = Self {
inner: Rc::clone(inner),
pinname: pinname.to_string(),
};
Ok(result)
}
}
impl GpioPin for HyperdebugGpioPin {
/// Reads the value of the GPIO pin `id`.
fn read(&self) -> Result<bool> {
let line = self
.inner
.cmd_one_line_output(&format!("gpioget {}", &self.pinname))?;
Ok(line.trim_start().starts_with('1'))
}
/// Sets the value of the GPIO pin `id` to `value`.
fn write(&self, value: bool) -> Result<()> {
self.inner
.cmd_no_output(&format!("gpioset {} {}", &self.pinname, u32::from(value)))
}
fn set_mode(&self, mode: PinMode) -> Result<()> {
self.inner.cmd_no_output(&format!(
"gpiomode {} {}",
&self.pinname,
match mode {
PinMode::Input => "input",
PinMode::OpenDrain => "opendrain",
PinMode::PushPull => "pushpull",
PinMode::AnalogInput => "adc",
PinMode::AnalogOutput => "dac",
PinMode::Alternate => "alternate",
}
))
}
fn set_pull_mode(&self, mode: PullMode) -> Result<()> {
self.inner.cmd_no_output(&format!(
"gpiopullmode {} {}",
&self.pinname,
match mode {
PullMode::None => "none",
PullMode::PullUp => "up",
PullMode::PullDown => "down",
}
))
}
fn analog_read(&self) -> Result<f32> {
let line = self
.inner
.cmd_one_line_output(&format!("adc {}", &self.pinname))
.map_err(|_| TransportError::CommunicationError("No output from adc".to_string()))?;
static ADC_REGEX: Lazy<Regex> =
Lazy::new(|| Regex::new("^ +([^ ])+ = ([0-9]+) mV").unwrap());
if let Some(captures) = ADC_REGEX.captures(&line) {
let milli_volts: u32 = captures.get(2).unwrap().as_str().parse()?;
Ok(milli_volts as f32 / 1000.0)
} else {
Err(TransportError::CommunicationError("Unrecognized adc output".to_string()).into())
}
}
fn analog_write(&self, volts: f32) -> Result<()> {
if !(0.0..=3.3).contains(&volts) {
return Err(GpioError::UnsupportedPinVoltage(volts).into());
}
let milli_volts = (volts * 1000.0) as u32;
self.inner.cmd_no_output(&format!(
"gpio analog-set {} {}",
&self.pinname, milli_volts,
))
}
fn set(
&self,
mode: Option<PinMode>,
value: Option<bool>,
pull: Option<PullMode>,
volts: Option<f32>,
) -> Result<()> {
if let Some(v) = volts {
if !(0.0..=3.3).contains(&v) {
return Err(GpioError::UnsupportedPinVoltage(v).into());
}
}
self.inner.cmd_no_output(&format!(
"gpio multiset {} {} {} {} {}",
&self.pinname,
match value {
Some(false) => "0",
Some(true) => "1",
None => "-",
},
match mode {
Some(PinMode::Input) => "input",
Some(PinMode::OpenDrain) => "opendrain",
Some(PinMode::PushPull) => "pushpull",
Some(PinMode::AnalogInput) => "adc",
Some(PinMode::AnalogOutput) => "dac",
Some(PinMode::Alternate) => "alternate",
None => "-",
},
match pull {
Some(PullMode::None) => "none",
Some(PullMode::PullUp) => "up",
Some(PullMode::PullDown) => "down",
None => "-",
},
if let Some(v) = volts {
format!("{}", (v * 1000.0) as u32)
} else {
"-".to_string()
},
))
}
fn get_internal_pin_name(&self) -> Option<&str> {
Some(&self.pinname)
}
}
const USB_MAX_SIZE: usize = 64;
/// HyperDebug supports retreiving a transcript of events on a set of monitored GPIO pins either
/// through its textual console, or for improved performance, through a vendor extension to the
/// binary CMSIS-DAP endpoint.
///
/// This struct describes the binary header of the response (following the one-byte CMSIS-DAP
/// response header), after which the transcript data will follow. The protocol is designed to
/// allow HyperDebug to pretty much dump the contents of its internal buffer to the USB interface.
///
/// The data part consists of a sequence of integers in leb128 encoding. Each integer contains
/// the index of the signal that changed in the low bits, and the number of microseconds since
/// last event in the high bits. The number of bits used for encoding the signal depends on how
/// many signals are monitored.
///
/// The source for the HyperDebug firmware generating these responses is here:
/// https://chromium.googlesource.com/chromiumos/platform/ec/+/refs/heads/main/board/hyperdebug/gpio.c
#[derive(FromBytes, FromZeroes, Debug)]
#[repr(C)]
struct RspGpioMonitoringHeader {
/// Size of the header as sent by HyperDebug (excluding one byte CMSIS-DAP header), will be at
/// least `size_of::<RspGpioMonitoringHeader>`, but future versions could add more header
/// fields.
struct_size: u16,
/// Status/error code, zero means success.
status: u16,
/// Bitfield containing the levels of the monitored signals as of the begining of the
/// transcript about to be sent, starting from the lest significant bit.
start_levels: u16,
/// Number of data bytes following this header.
transcript_size: u16,
/// Timestamp when the monitoring was originally started (will be the same in subsequent
/// responses).
start_timestamp: u64,
/// Timestamp when the current transcript ends (will be different in subsequenct responses).
end_timestamp: u64,
}
pub struct HyperdebugGpioMonitoring {
inner: Rc<Inner>,
cmsis_interface: Option<BulkInterface>,
}
impl HyperdebugGpioMonitoring {
/// CMSIS extension for HyperDebug GPIO.
const CMSIS_DAP_CUSTOM_COMMAND_GPIO: u8 = 0x83;
/// Sub-command for reading list of GPIO edge events
const GPIO_MONITORING_READ: u8 = 0x00;
// Some of the possible values for RspGpioMonitoringHeader.status
const MON_SUCCESS: u16 = 0;
const MON_BUFFER_OVERRUN: u16 = 5;
pub fn open(inner: &Rc<Inner>, cmsis_interface: Option<BulkInterface>) -> Result<Self> {
Ok(Self {
inner: Rc::clone(inner),
cmsis_interface,
})
}
}
impl GpioMonitoring for HyperdebugGpioMonitoring {
fn get_clock_nature(&self) -> Result<ClockNature> {
Ok(ClockNature::Wallclock {
resolution: 1_000_000,
offset: None,
})
}
/// Set up edge trigger detection on the given set of pins, transport will buffer the list
/// internally.
fn monitoring_start(&self, pins: &[&dyn GpioPin]) -> Result<MonitoringStartResponse> {
let mut pin_names = Vec::new();
for pin in pins {
pin_names.push(
pin.get_internal_pin_name()
.ok_or(TransportError::InvalidOperation)?,
);
}
static START_TIME_REGEX: Lazy<Regex> = Lazy::new(|| Regex::new("^ +@([0-9]+)").unwrap());
static SIGNAL_REGEX: Lazy<Regex> =
Lazy::new(|| Regex::new("^ +([0-9]+) ([^ ])+ ([01])").unwrap());
let mut start_time: u64 = 0;
let mut signals = Vec::new();
let mut unexpected_output = false;
self.inner.execute_command(
&format!("gpio monitoring start {}", pin_names.join(" ")),
|line| {
if let Some(captures) = START_TIME_REGEX.captures(line) {
start_time = captures.get(1).unwrap().as_str().parse().unwrap();
} else if let Some(captures) = SIGNAL_REGEX.captures(line) {
signals.push(captures.get(3).unwrap().as_str() != "0");
} else {
unexpected_output = true;
log::error!("Unexpected HyperDebug output: {}\n", line);
};
},
)?;
if unexpected_output {
bail!(TransportError::CommunicationError(
"Unrecognized response".to_string()
))
}
Ok(MonitoringStartResponse {
timestamp: start_time,
initial_levels: signals,
})
}
/// Retrieve list of events detected thus far, optionally stopping the possibly expensive edge
/// detection. Buffer overrun will be reported as an `Err`, and result in the stopping of the
/// edge detection irrespective of the parameter value.
fn monitoring_read(
&self,
pins: &[&dyn GpioPin],
continue_monitoring: bool,
) -> Result<MonitoringReadResponse> {
let mut pin_names = Vec::new();
for pin in pins {
pin_names.push(
pin.get_internal_pin_name()
.ok_or(TransportError::InvalidOperation)?,
);
}
if let Some(cmsis_interface) = self.cmsis_interface {
// HyperDebug firmware supports binary protocol for retrieving list of events, use
// that for greatly improved performance.
let mut pkt = Vec::<u8>::new();
pkt.write_u8(Self::CMSIS_DAP_CUSTOM_COMMAND_GPIO)?;
pkt.write_u8(Self::GPIO_MONITORING_READ)?;
pkt.write_u8(pin_names.len().try_into()?)?;
for pin_name in &pin_names {
pkt.write_u8(pin_name.len().try_into()?)?;
pkt.extend_from_slice(pin_name.as_bytes());
}
self.inner
.usb_device
.borrow()
.write_bulk(cmsis_interface.out_endpoint, &pkt)?;
let mut databytes: Vec<u8> =
vec![0u8; 1 + size_of::<RspGpioMonitoringHeader>() + USB_MAX_SIZE];
let mut bytecount = 0;
while bytecount < 1 + size_of::<RspGpioMonitoringHeader>() {
let read_count = self.inner.usb_device.borrow().read_bulk(
cmsis_interface.in_endpoint,
&mut databytes[bytecount..][..USB_MAX_SIZE],
)?;
ensure!(
read_count > 0,
TransportError::CommunicationError("Truncated GPIO response".to_string())
);
bytecount += read_count;
}
ensure!(
databytes[0] == Self::CMSIS_DAP_CUSTOM_COMMAND_GPIO,
TransportError::CommunicationError(
"Unrecognized CMSIS-DAP response to GPIO request".to_string()
)
);
let resp: RspGpioMonitoringHeader =
FromBytes::read_from_prefix(&databytes[1..]).unwrap();
ensure!(
resp.struct_size as usize >= size_of::<RspGpioMonitoringHeader>(),
TransportError::CommunicationError(
"Short CMSIS-DAP response to GPIO request".to_string()
)
);
let header_bytes = resp.struct_size as usize + 1;
databytes.resize(header_bytes + resp.transcript_size as usize, 0u8);
while bytecount < databytes.len() {
let c = self
.inner
.usb_device
.borrow()
.read_bulk(cmsis_interface.in_endpoint, &mut databytes[bytecount..])?;
bytecount += c;
}
match resp.status {
Self::MON_SUCCESS => (),
Self::MON_BUFFER_OVERRUN => bail!(TransportError::CommunicationError(
"HyperDebug GPIO monitoring buffer overrun".to_string()
)),
n => bail!(TransportError::CommunicationError(format!(
"Unexpected HyperDebug GPIO error: {}",
n
))),
}
// Figure out how many of the low bits are used for storing the index of the signal
// hanving changed. (If only one signal, no bits are used, if two signals, then one
// bit is used, if three or four, then two bits are used, etc.)
let signal_bits = 32 - (pin_names.len() as u32 - 1).leading_zeros();
let signal_mask = (1u64 << signal_bits) - 1;
let mut cur_time: u64 = resp.start_timestamp;
let mut cur_levels = resp.start_levels;
let mut events = Vec::new();
let mut idx = header_bytes;
// Now decode the list of events, each consisting of a variable legnth encoded 64-bit
// integer.
while idx < databytes.len() {
let value = decode_leb128(&mut idx, &databytes)?;
// The 64-bit value consists of two parts, the lower `signal_bits` bits indicate
// which signal had an edge, the upper bits indicate the number of microseconds
// since the previous event (on any signal, not necessarily on that same one).
cur_time += value >> signal_bits;
let signal_index = (value & signal_mask) as u8;
cur_levels ^= 1 << signal_index;
events.push(MonitoringEvent {
signal_index,
edge: if cur_levels & (1 << signal_index) == 0 {
Edge::Falling
} else {
Edge::Rising
},
timestamp: cur_time,
});
}
if !continue_monitoring {
self.inner
.cmd_no_output(&format!("gpio monitoring stop {}", pin_names.join(" ")))?;
}
return Ok(MonitoringReadResponse {
events,
timestamp: resp.end_timestamp,
});
}
static START_TIME_REGEX: Lazy<Regex> = Lazy::new(|| Regex::new("^ +@([0-9]+)").unwrap());
static EDGE_REGEX: Lazy<Regex> =
Lazy::new(|| Regex::new("^ +([0-9]+) (-?[0-9]+) ([RF])").unwrap());
let mut reference_time: u64 = 0;
let mut events = Vec::new();
loop {
let mut more_data = false;
let mut buffer_overrun = false;
let mut unexpected_output = false;
self.inner.execute_command(
&format!("gpio monitoring read {}", pin_names.join(" ")),
|line| {
if let Some(captures) = START_TIME_REGEX.captures(line) {
reference_time = captures.get(1).unwrap().as_str().parse().unwrap();
} else if let Some(captures) = EDGE_REGEX.captures(line) {
events.push(MonitoringEvent {
signal_index: captures.get(1).unwrap().as_str().parse().unwrap(),
edge: if captures.get(3).unwrap().as_str() == "R" {
Edge::Rising
} else {
Edge::Falling
},
timestamp: (reference_time as i64
+ captures.get(2).unwrap().as_str().parse::<i64>().unwrap())
as u64,
});
} else if line == "Warning: more data" {
more_data = true;
} else if line == "Error: Buffer overrun" {
buffer_overrun = true;
} else {
unexpected_output = true;
log::error!("Unexpected HyperDebug output: {}\n", line);
}
},
)?;
if unexpected_output {
bail!(TransportError::CommunicationError(
"Unrecognized response".to_string()
))
}
if buffer_overrun {
bail!(TransportError::CommunicationError(
"HyperDebug GPIO monitoring buffer overrun".to_string()
))
}
if !more_data {
break;
}
}
if !continue_monitoring {
self.inner
.cmd_no_output(&format!("gpio monitoring stop {}", pin_names.join(" ")))?;
}
Ok(MonitoringReadResponse {
events,
timestamp: reference_time,
})
}
}
/// Read 7 bits from each byte, least significant byte first. High bit of one indicates more
/// bytes belong to the same value.
fn decode_leb128(idx: &mut usize, databytes: &[u8]) -> Result<u64> {
let mut i = *idx;
let mut value = 0u64;
let mut shift = 0;
while i < databytes.len() {
let byte = databytes[i];
value |= ((byte & 0x7F) as u64) << shift;
shift += 7;
i += 1;
if (byte & 0x80) == 0 {
*idx = i;
return Ok(value);
}
if shift + 7 > 64 {
// Too many bytes in encoding of a single integer, could overflow 64 bit unsigned.
bail!(TransportError::CommunicationError(
"Corrupt data from HyperDebug GPIO monitoring".to_string(),
));
}
}
// End of stream "in the middle" of a multi-byte integer encoding.
bail!(TransportError::CommunicationError(
"Corrupt data from HyperDebug GPIO monitoring".to_string(),
));
}
pub struct HyperdebugGpioBitbanging {
inner: Rc<Inner>,
cmsis_interface: BulkInterface,
}
impl HyperdebugGpioBitbanging {
pub fn open(inner: &Rc<Inner>, cmsis_interface: BulkInterface) -> Result<Self> {
// Exclusively claim CMSIS-DAP interface, preparing for bulk transfers.
inner
.usb_device
.borrow_mut()
.claim_interface(cmsis_interface.interface)?;
Ok(Self {
inner: Rc::clone(inner),
cmsis_interface,
})
}
}
struct DacEncoder {
/// Conversion factor from volts to 12-bit unsigned DAC value.
factor: f32,
}
impl DacEncoder {
fn encode_dac_sample(&self, out: &mut Vec<u8>, voltage: f32) {
let count = voltage * self.factor;
let count: u16 = if count <= 0.0 {
0
} else if count >= 4095.0 {
4095
} else {
count as u16
};
out.push((count >> 8) as u8);
out.push((count & 0xFF) as u8);
}
}
static DAC_BANG_REGEX: Lazy<Regex> =
Lazy::new(|| Regex::new("^Calibration: ([0-9]+) ([0-9]+)").unwrap());
impl GpioBitbanging for HyperdebugGpioBitbanging {
fn start<'a>(
&self,
pins: &[&dyn GpioPin],
clock_tick: Duration,
waveform: Box<[BitbangEntry<'a, 'a>]>,
) -> Result<Box<dyn GpioBitbangOperation<'a, 'a> + 'a>> {
Ok(Box::new(HyperdebugGpioBitbangOperation::new(
Rc::clone(&self.inner),
self.cmsis_interface,
pins,
clock_tick,
waveform,
)?))
}
fn dac_start(
&self,
pins: &[&dyn GpioPin],
clock_tick: Duration,
waveform: Box<[DacBangEntry]>,
) -> Result<Box<dyn GpioDacBangOperation>> {
Ok(Box::new(HyperdebugGpioDacBangOperation::new(
Rc::clone(&self.inner),
self.cmsis_interface,
pins,
clock_tick,
&waveform,
)?))
}
}
/// Represents a two-way streaming binary data transfer operation, as is used for bit-banging, or
/// for outputting arbitrary waveforms via a DAC.
pub struct HyperdebugDataOperation {
inner: Rc<Inner>,
cmsis_interface: BulkInterface,
encoded_waveform: Vec<u8>,
free_bytes: usize,
out_ptr: usize,
in_ptr: usize,
}
impl HyperdebugDataOperation {
/// CMSIS extension for HyperDebug GPIO.
const CMSIS_DAP_CUSTOM_COMMAND_GPIO: u8 = 0x83;
/// Sub-command for HyperDebug GPIO bitbanging.
const GPIO_BITBANG: u8 = 0x10;
const GPIO_BITBANG_STREAMING: u8 = 0x11;
/// Device status (whether there is an ongoing bitbang operation)
const STATUS_BITBANG_IDLE: u8 = 0x00;
const STATUS_BITBANG_ONGOING: u8 = 0x01;
const STATUS_BITBANG_ERROR_WAVEFORM: u8 = 0x80;
fn new(
inner: Rc<Inner>,
cmsis_interface: BulkInterface,
encoded_waveform: Vec<u8>,
) -> Result<HyperdebugDataOperation> {
// Send an initial request, to ask how much buffer space HyperDebug has, so that we can
// fill the buffer, while avoiding overflows.
let free_bytes: usize = {
let usb = inner.usb_device.borrow();
let mut pkt = Vec::<u8>::new();
pkt.write_u8(Self::CMSIS_DAP_CUSTOM_COMMAND_GPIO)?;
pkt.write_u8(Self::GPIO_BITBANG)?;
pkt.write_u16::<LittleEndian>(0)?;
usb.write_bulk(cmsis_interface.out_endpoint, &pkt)?;
let mut databytes = [0u8; 64];
let c = usb.read_bulk(cmsis_interface.in_endpoint, &mut databytes)?;
let mut rdr = Cursor::new(&databytes[..c]);
ensure!(
rdr.read_u8()? == Self::CMSIS_DAP_CUSTOM_COMMAND_GPIO,
TransportError::CommunicationError(
"Incorrect CMSIS-DAP header in response to GPIO request".to_string()
)
);
ensure!(
rdr.read_u8()? == Self::STATUS_BITBANG_IDLE,
TransportError::CommunicationError(
"HyperDebug not responding correctly".to_string()
)
);
let free_bytes = rdr.read_u16::<LittleEndian>()?;
free_bytes as usize
};
Ok(Self {
inner,
cmsis_interface,
encoded_waveform,
free_bytes,
out_ptr: 0,
in_ptr: 0,
})
}
fn query(&mut self) -> Result<bool> {
if self.in_ptr >= self.encoded_waveform.len() {
return Ok(true);
}
let usb = self.inner.usb_device.borrow();
let chunk_size = std::cmp::min(self.encoded_waveform.len() - self.out_ptr, self.free_bytes);
let mut pkt = Vec::<u8>::new();
pkt.write_u8(Self::CMSIS_DAP_CUSTOM_COMMAND_GPIO)?;
if self.out_ptr + chunk_size < self.encoded_waveform.len() {
// We prefer partial response, in order to be able to fill up buffer before
// HyperDebug runs out of data to clock out.
pkt.write_u8(Self::GPIO_BITBANG_STREAMING)?;
} else {
// We want response only after every byte is transmitted
pkt.write_u8(Self::GPIO_BITBANG)?;
}
pkt.write_u16::<LittleEndian>(chunk_size as u16)?;
pkt.extend_from_slice(&self.encoded_waveform[self.out_ptr..self.out_ptr + chunk_size]);
usb.write_bulk(self.cmsis_interface.out_endpoint, &pkt)?;
let mut databytes = [0u8; 64];
let c = usb.read_bulk(self.cmsis_interface.in_endpoint, &mut databytes)?;
let mut rdr = Cursor::new(&databytes[..c]);
ensure!(
rdr.read_u8()? == Self::CMSIS_DAP_CUSTOM_COMMAND_GPIO,
TransportError::CommunicationError(
"Incorrect CMSIS-DAP header in response to GPIO request".to_string()
)
);
match rdr.read_u8()? {
Self::STATUS_BITBANG_ONGOING => (),
Self::STATUS_BITBANG_IDLE => bail!(TransportError::CommunicationError(
"GPIO request aborted".to_string()
)),
Self::STATUS_BITBANG_ERROR_WAVEFORM => bail!(TransportError::CommunicationError(
"HyperDebug reports encoding error".to_string()
)),
status => bail!(TransportError::CommunicationError(std::format!(
"Unrecognized status code: {}",
status
))),
}
self.free_bytes = rdr.read_u16::<LittleEndian>()? as usize;
let response_size = rdr.read_u16::<LittleEndian>()? as usize;
let final_in_ptr = self.in_ptr + response_size;
// Copy any data in initial packet
let data_in_header = c - rdr.position() as usize;
self.encoded_waveform[self.in_ptr..self.in_ptr + data_in_header]
.copy_from_slice(&databytes[rdr.position() as usize..][..data_in_header]);
self.in_ptr += data_in_header;
while self.in_ptr < final_in_ptr {
self.in_ptr += usb.read_bulk(
self.cmsis_interface.in_endpoint,
&mut self.encoded_waveform[self.in_ptr..final_in_ptr],
)?;
}
self.out_ptr += chunk_size;
if self.in_ptr >= self.encoded_waveform.len() {
Ok(true)
} else {
Ok(false)
}
}
}
/// Represents an ongoing operation of bit-banging a number of GPIO pins.
pub struct HyperdebugGpioBitbangOperation<'a> {
num_pins: usize,
waveform: Box<[BitbangEntry<'a, 'a>]>,
operation: HyperdebugDataOperation,
}
impl<'a> HyperdebugGpioBitbangOperation<'a> {
fn new(
inner: Rc<Inner>,
cmsis_interface: BulkInterface,
pins: &[&dyn GpioPin],
clock_tick: Duration,
waveform: Box<[BitbangEntry<'a, 'a>]>,
) -> Result<Self> {
// Verify that `waveform` is valid, by converting into the binary representation to send
// to HyperDebug.
let encoded_waveform = encode_waveform(&waveform, pins.len())?;
// Tell HyperDebug about the set of pins to manipulate, and the clock speed, using the
// textual console protocol.
let mut pin_names = Vec::new();
for pin in pins {
pin_names.push(
pin.get_internal_pin_name()
.ok_or(TransportError::InvalidOperation)?,
);
}
inner.cmd_no_output(&format!(
"gpio bit-bang {} {}",
clock_tick.as_nanos(),
pin_names.join(" ")
))?;
// Here is the main two-way transfer logic. At each iteration we send a number of bytes,
// capped at what HyperDebug has most recently indicated was available. In response we
// will receive some number of bytes of samples taken as the data was clocked out (similar
// to how FTDI synchronous bitbanging works). HyperDebug will send a response when it has
// half of its buffer full of sampled data to send, or when some amount of time has passed
// (relevant for slow clock speeds). With this scheme, the bit-banging of waveforms
// longer than what fits in HyperDebug memory can be produced, without HyperDebug ever
// needing to "stop the clock" waiting for more data.
Ok(Self {
num_pins: pins.len(),
waveform,
operation: HyperdebugDataOperation::new(inner, cmsis_interface, encoded_waveform)?,
})
}
}
impl<'a> GpioBitbangOperation<'a, 'a> for HyperdebugGpioBitbangOperation<'a> {
fn query(&mut self) -> Result<bool> {
if self.operation.query()? {
// Decode the binary representation from HyperDebug into any `BitbangEntry::Both()`
// entries in `waveform`, allowing the caller to inspect data sampled at bitbanging
// clock ticks (useful with open drain or pure input pins).
decode_waveform(
&mut self.waveform,
&self.operation.encoded_waveform,
self.num_pins,
)?;
Ok(true)
} else {
Ok(false)
}
}
fn get_result(self: Box<Self>) -> Result<Box<[BitbangEntry<'a, 'a>]>> {
Ok(self.waveform)
}
}
/// Represents an ongoing operation of dac-banging a number of GPIO pins. Since there is no
/// incoming data to decode, this struct unlike the corresponding bit-banging one, does not need
/// to maintain any additional records, besides the encoded binary data to be streamed to
/// HyperDebug, in the `operation` field.
pub struct HyperdebugGpioDacBangOperation {
operation: HyperdebugDataOperation,
}
impl HyperdebugGpioDacBangOperation {
fn new(
inner: Rc<Inner>,
cmsis_interface: BulkInterface,
pins: &[&dyn GpioPin],
clock_tick: Duration,
waveform: &[DacBangEntry],
) -> Result<Self> {
// Tell HyperDebug about the set of pins to manipulate, and the clock speed, using the
// textual console protocol.
let mut pin_names = Vec::new();
for pin in pins {
pin_names.push(
pin.get_internal_pin_name()
.ok_or(TransportError::InvalidOperation)?,
);
}
let mut buf = String::new();
let captures = inner.cmd_one_line_output_match(
&format!(
"gpio dac-bang {} {}",
clock_tick.as_nanos(),
pin_names.join(" ")
),
&DAC_BANG_REGEX,
&mut buf,
)?;
let multiplier: u32 = captures.get(1).unwrap().as_str().parse().unwrap();
let divisor: u32 = captures.get(2).unwrap().as_str().parse().unwrap();
// Set up how to "encode" a voltage as 12-bit DAC value, using calibration factors from
// HyperDebug.
let encoder = DacEncoder {
factor: 1000.0 * multiplier as f32 / divisor as f32,
};
let mut encoded_waveform: Vec<u8> = Vec::new();
let mut last: Vec<f32> = Vec::new();
last.resize(pins.len(), 0.0);
let mut delay = 0u32;
let mut linear = 0u32;
for a in waveform.iter() {
match a {
DacBangEntry::Write(d) => {
ensure!(
!d.is_empty() && d.len() % pins.len() == 0,
GpioError::InvalidDacBangData
);
ensure!(delay == 0 || linear == 0, GpioError::InvalidDacBangDelay);
if linear > 1 {
// Linear transition from one voltage to another over a given time is
// encoded as a list of explicit voltage at the selected clock rate.
// (Clock rates above 50k samples per second may not be able to sustain
// the data throughput, if the sequence does not fit in HyperDebug buffer,
// and must be streamed.)
for sample_no in 1..linear {
for i in 0..pins.len() {
let val =
last[i] + (d[i] - last[i]) * sample_no as f32 / linear as f32;
encoder.encode_dac_sample(&mut encoded_waveform, val);
}
}
}
if delay > 1 {
// Delays are encoded using one or more bytes with the MSB set to one. Each
// containing 7 bits of the delay value, with the least significant bits in
// the first byte.
let encoded_delay = delay - 1;
let mut shift = 0;
while (encoded_delay >> shift) != 0 {
encoded_waveform.push(0x80 | ((encoded_delay >> shift) & 0x7F) as u8);
shift += 7;
}
}
for voltage in *d {
encoder.encode_dac_sample(&mut encoded_waveform, *voltage);
}
for i in 0..pins.len() {
last[i] = d[d.len() - pins.len() + i];
}
delay = 0;
linear = 0;
}
DacBangEntry::WriteOwned(d) => {
ensure!(
!d.is_empty() && d.len() % pins.len() == 0,
GpioError::InvalidDacBangData
);
ensure!(delay == 0 || linear == 0, GpioError::InvalidDacBangDelay);
if linear > 1 {
// Linear transition from one voltage to another over a given time is
// encoded as a list of explicit voltage at the selected clock rate.
// (Clock rates above 50k samples per second may not be able to sustain
// the data throughput, if the sequence does not fit in HyperDebug buffer,
// and must be streamed.)
for sample_no in 1..linear {
for i in 0..pins.len() {
let val =
last[i] + (d[i] - last[i]) * sample_no as f32 / linear as f32;
encoder.encode_dac_sample(&mut encoded_waveform, val);
}
}
}
if delay > 1 {
// Delays are encoded using one or more bytes with the MSB set to one. Each
// containing 7 bits of the delay value, with the least significant bits in
// the first byte.
let encoded_delay = delay - 1;
let mut shift = 0;
while (encoded_delay >> shift) != 0 {
encoded_waveform.push(0x80 | ((encoded_delay >> shift) & 0x7F) as u8);
shift += 7;
}
}
for voltage in d.iter() {
encoder.encode_dac_sample(&mut encoded_waveform, *voltage);
}
for i in 0..pins.len() {
last[i] = d[d.len() - pins.len() + i];
}
delay = 0;
linear = 0;
}
DacBangEntry::Delay(0) => bail!(GpioError::InvalidDacBangDelay),
DacBangEntry::Delay(n @ 1..) => {
delay += *n;
}
DacBangEntry::Linear(0) => bail!(GpioError::InvalidDacBangDelay),
DacBangEntry::Linear(n @ 1..) => {
linear += *n;
}
}
}
// Do not allow Delay or Linear as the final entry
ensure!(delay == 0, GpioError::InvalidBitbangDelay);
ensure!(linear == 0, GpioError::InvalidBitbangDelay);
Ok(Self {
operation: HyperdebugDataOperation::new(inner, cmsis_interface, encoded_waveform)?,
})
}
}
impl GpioDacBangOperation for HyperdebugGpioDacBangOperation {
fn query(&mut self) -> Result<bool> {
self.operation.query()
}
}
/// Produce binary encoding of waveform and delays, which can be sent to HyperDebug.
fn encode_waveform(waveform: &[BitbangEntry], num_pins: usize) -> Result<Vec<u8>> {
ensure!(
(1..=7).contains(&num_pins),
GpioError::UnsupportedNumberOfPins(num_pins)
);
let mut encoded_waveform = Vec::<u8>::new();
let mut delay = 0u32;
for entry in waveform {
match entry {
BitbangEntry::Write(wbuf) | BitbangEntry::Both(wbuf, _) => {
if delay > 1 {
// Delays are encoded using one or more bytes with the MSB set to one. Each
// containing 7 bits of the delay value, with the least significant bits in
// the first byte.
let encoded_delay = delay - 1;
let mut shift = 0;
while (encoded_delay >> shift) != 0 {
encoded_waveform.push(0x80 | ((encoded_delay >> shift) & 0x7F) as u8);
shift += 7;
}
}
// A sequence of samples using up to 7 of the lowest bits, with the MSB set to
// zero.
for byte in *wbuf {
ensure!(
(byte >> num_pins) == 0,
GpioError::InvalidBitbangData(num_pins)
);
}
encoded_waveform.extend_from_slice(wbuf);
delay = 0;
}
BitbangEntry::WriteOwned(wbuf) | BitbangEntry::BothOwned(wbuf) => {
if delay > 1 {
// Delays are encoded using one or more bytes with the MSB set to one. Each
// containing 7 bits of the delay value, with the least significant bits in
// the first byte.
let encoded_delay = delay - 1;
let mut shift = 0;
while (encoded_delay >> shift) != 0 {
encoded_waveform.push(0x80 | ((encoded_delay >> shift) & 0x7F) as u8);
shift += 7;
}
}
// A sequence of samples using up to 7 of the lowest bits, with the MSB set to
// zero.
for byte in wbuf.iter() {
ensure!(
(byte >> num_pins) == 0,
GpioError::InvalidBitbangData(num_pins)
);
}
encoded_waveform.extend_from_slice(wbuf);
delay = 0;
}
BitbangEntry::Delay(0) => bail!(GpioError::InvalidBitbangDelay),
BitbangEntry::Delay(n @ 1..) => {
delay += *n;
}
BitbangEntry::Await { mask, pattern } => {
ensure!(delay == 0, GpioError::InvalidBitbangDelay);
encoded_waveform.extend_from_slice(&[0x80, 0x80, *mask, *pattern]);
delay = 0;
}
}
}
// Do not allow Delay as the final entry
ensure!(delay == 0, GpioError::InvalidBitbangDelay);
Ok(encoded_waveform)
}
/// Decode the binary representation from HyperDebug into any `BitbangEntry::Both()` entries in
/// `waveform`, allowing the caller to inspect data sampled at bitbanging clock ticks (useful with
/// open drain or pure input pins).
fn decode_waveform(
waveform: &mut [BitbangEntry],
encoded_response: &Vec<u8>,
num_pins: usize,
) -> Result<()> {
ensure!(
(1..=7).contains(&num_pins),
GpioError::UnsupportedNumberOfPins(num_pins)
);
let mut index = 0usize;
for entry in waveform {
match entry {
BitbangEntry::Write(wbuf) => {
index += wbuf.len();
}
BitbangEntry::WriteOwned(wbuf) => {
index += wbuf.len();
}
BitbangEntry::Both(wbuf, rbuf) => {
ensure!(
rbuf.len() == wbuf.len(),
GpioError::MismatchedDataLength(wbuf.len(), rbuf.len())
);
rbuf.copy_from_slice(&encoded_response[index..][..rbuf.len()]);
index += wbuf.len();
}
BitbangEntry::BothOwned(rbuf) => {
rbuf.copy_from_slice(&encoded_response[index..][..rbuf.len()]);
index += rbuf.len();
}
BitbangEntry::Delay(_) => {
while encoded_response[index] & 0x80 != 0 {
index += 1;
}
}
BitbangEntry::Await { .. } => {
index += 4;
}
}
}
assert!(index == encoded_response.len());
Ok(())
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_encode_waveforms() {
let encoding = encode_waveform(
&[
BitbangEntry::Write(&[0, 1, 0, 1]),
BitbangEntry::Delay(0x0101),
BitbangEntry::Write(&[0, 1, 0, 1]),
],
1,
)
.unwrap();
assert_eq!(
encoding,
[0x00, 0x01, 0x00, 0x01, 0x80, 0x82, 0x00, 0x01, 0x00, 0x01]
);
}
}