opentitanlib/transport/common/
uart.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
// Copyright lowRISC contributors (OpenTitan project).
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0

use std::cell::{Cell, RefCell};
use std::collections::VecDeque;
use std::io::{ErrorKind, Read, Write};
use std::os::fd::{AsRawFd, BorrowedFd};
use std::task::{Context, Poll, Waker, ready};
use std::time::Duration;

use anyhow::{Context as _, Result};
use serialport::{ClearBuffer, Parity, SerialPort, TTYPort};
use tokio::io::unix::AsyncFd;

//use crate::io::uart::{Uart, UartError};
use crate::io::uart::{FlowControl, Uart, UartError};
use crate::transport::TransportError;
use crate::util;
use crate::util::runtime::MultiWaker;

/// Implementation of the `Uart` trait on top of a serial device, such as `/dev/ttyUSB0`.
pub struct SerialPortUart {
    port_name: String,
    port: RefCell<AsyncFd<TTYPort>>,
    pseudo_baud: Cell<u32>,
    multi_waker: MultiWaker,
}

impl SerialPortUart {
    // Not really forever, but close enough.  I'd rather use Duration::MAX, but
    // it seems that the serialport library can compute an invalid `timeval` struct
    // to pass to `poll`, which then leads to an `Invalid argument` error when
    // trying to `read` or `write` without a timeout.  One hundred years should be
    // longer than any invocation of this program.
    const FOREVER: Duration = Duration::from_secs(100 * 365 * 86400);

    /// Open the given serial device, such as `/dev/ttyUSB0`.
    pub fn open(port_name: &str, baud: u32) -> Result<Self> {
        let port = TTYPort::open(&serialport::new(port_name, baud).preserve_dtr_on_open())
            .map_err(|e| UartError::OpenError(e.to_string()))?;
        let _runtime_guard = crate::util::runtime().enter();
        let port = AsyncFd::new(port)?;
        flock_serial(port.get_ref(), port_name)?;
        Ok(SerialPortUart {
            port_name: port_name.to_string(),
            port: RefCell::new(port),
            pseudo_baud: Cell::new(0),
            multi_waker: MultiWaker::new(),
        })
    }

    /// Open a pseudo port (e.g. a verilator pts device).
    pub fn open_pseudo(port_name: &str, baud: u32) -> Result<Self> {
        let port = TTYPort::open(&serialport::new(port_name, baud).preserve_dtr_on_open())
            .map_err(|e| UartError::OpenError(e.to_string()))?;
        let _runtime_guard = crate::util::runtime().enter();
        let port = AsyncFd::new(port)?;
        flock_serial(port.get_ref(), port_name)?;
        Ok(SerialPortUart {
            port_name: port_name.to_string(),
            port: RefCell::new(port),
            pseudo_baud: Cell::new(baud),
            multi_waker: MultiWaker::new(),
        })
    }
}

impl Uart for SerialPortUart {
    /// Returns the UART baudrate.  May return zero for virtual UARTs.
    fn get_baudrate(&self) -> Result<u32> {
        let pseudo = self.pseudo_baud.get();
        if pseudo == 0 {
            self.port
                .borrow()
                .get_ref()
                .baud_rate()
                .context("getting baudrate")
        } else {
            Ok(pseudo)
        }
    }

    /// Sets the UART baudrate.  May do nothing for virtual UARTs.
    fn set_baudrate(&self, baudrate: u32) -> Result<()> {
        let pseudo = self.pseudo_baud.get();
        if pseudo == 0 {
            self.port
                .borrow_mut()
                .get_mut()
                .set_baud_rate(baudrate)
                .map_err(|_| UartError::InvalidSpeed(baudrate))?;
        } else {
            self.pseudo_baud.set(baudrate);
        }
        Ok(())
    }

    fn get_device_path(&self) -> Result<String> {
        Ok(self.port_name.clone())
    }

    fn poll_read(&self, cx: &mut Context<'_>, buf: &mut [u8]) -> Poll<Result<usize>> {
        let mut port = self.port.borrow_mut();

        loop {
            let mut guard = ready!(
                self.multi_waker
                    .poll_with(cx, |cx| port.poll_read_ready_mut(cx))
            )?;

            match guard.try_io(|inner| {
                inner.get_mut().set_timeout(Duration::ZERO)?;
                let result = match inner.get_mut().read(buf) {
                    Ok(n) => Ok(n),
                    Err(ioerr) if ioerr.kind() == ErrorKind::TimedOut => {
                        Err(std::io::Error::new(std::io::ErrorKind::WouldBlock, ioerr))
                    }
                    Err(ioerr) => Err(ioerr)?,
                };
                inner.get_mut().set_timeout(Self::FOREVER)?;
                result
            }) {
                Ok(result) => return Poll::Ready(Ok(result?)),
                Err(_would_block) => continue,
            }
        }
    }

    /// Writes data from `buf` to the UART.
    fn write(&self, buf: &[u8]) -> Result<()> {
        // Perform blocking write of all bytes in `buf` even if the mio library has put the
        // file descriptor into non-blocking mode.
        let mut port = self.port.borrow_mut();
        let mut idx = 0;
        while idx < buf.len() {
            match port.get_mut().write(&buf[idx..]) {
                Ok(n) => idx += n,
                Err(ioerr) if ioerr.kind() == ErrorKind::TimedOut => {
                    // Buffers are full, file descriptor is non-blocking.  Explicitly wait for
                    // this one file descriptor to again become ready for writing.  Since this
                    // is a UART, we know that it will become ready in bounded time.
                    util::file::wait_timeout(
                        // SAFETY: The file descriptor is owned by `port` and is valid.
                        unsafe { BorrowedFd::borrow_raw(port.as_raw_fd()) },
                        rustix::event::PollFlags::OUT,
                        Duration::from_secs(5),
                    )?;
                }
                Err(ioerr) => return Err(ioerr).context("UART communication error"),
            }
        }

        Ok(())
    }

    fn set_break(&self, enable: bool) -> Result<()> {
        let mut port = self.port.borrow_mut();
        if enable {
            port.get_mut().set_break()?;
        } else {
            port.get_mut().clear_break()?;
        }
        Ok(())
    }

    fn set_parity(&self, parity: Parity) -> Result<()> {
        self.port.borrow_mut().get_mut().set_parity(parity)?;
        Ok(())
    }

    /// Clears the UART RX buffer.
    fn clear_rx_buffer(&self) -> Result<()> {
        self.port.borrow_mut().get_mut().clear(ClearBuffer::Input)?;

        // There might still be data in the device buffer, try to
        // drain that as well.
        //
        // NOTE This code will only have an effect on backends that
        // use SerialPortUart and do not override clear_rx_buffer,
        // such as the chip_whisperer backend (which uses the SAM3x
        // for UART). On backends such as hyperdebug which have a specific
        // mechanism to clear the device buffers, following code will not
        // doing anything useful.
        const TIMEOUT: Duration = Duration::from_millis(5);
        let mut buf = [0u8; 256];
        while self.read_timeout(&mut buf, TIMEOUT)? > 0 {}
        Ok(())
    }
}

/// Invoke Linux `flock()` on the given serial port, lock will be released when the file
/// descriptor is closed (or when the process terminates).
pub fn flock_serial(port: &TTYPort, port_name: &str) -> Result<()> {
    // SAFETY: `fd` is owned by `port` and is valid.
    let fd = unsafe { BorrowedFd::borrow_raw(port.as_raw_fd()) };
    rustix::fs::flock(fd, rustix::fs::FlockOperation::NonBlockingLockExclusive).map_err(|_| {
        TransportError::OpenError(port_name.to_string(), "Device is locked".to_string())
    })?;
    Ok(())
}

/// Add software flow control to a UART device.
///
/// Flow control is performed using XON/XOFF bytes.
pub struct SoftwareFlowControl<T> {
    inner: T,
    flow_control: Cell<FlowControl>,
    rxbuf: RefCell<VecDeque<u8>>,
}

impl<T: Uart> SoftwareFlowControl<T> {
    /// Open the given serial device, such as `/dev/ttyUSB0`.
    pub fn new(inner: T) -> Self {
        SoftwareFlowControl {
            inner,
            flow_control: Cell::new(FlowControl::None),
            rxbuf: RefCell::default(),
        }
    }

    /// Attempt to read more data into the buffer, and handle flow control characters.
    ///
    /// This may not add more data to the buffer if all characters are flow control.
    fn poll_read_to_buffer(&self, cx: &mut Context<'_>) -> Poll<Result<()>> {
        let mut buf = [0u8; 256];
        let len = ready!(self.inner.poll_read(cx, &mut buf)).context("UART read error")?;

        for &ch in &buf[..len] {
            if self.flow_control.get() != FlowControl::None {
                if ch == FlowControl::Resume as u8 {
                    log::debug!("Got RESUME");
                    self.flow_control.set(FlowControl::Resume);
                    continue;
                } else if ch == FlowControl::Pause as u8 {
                    log::debug!("Got PAUSE");
                    self.flow_control.set(FlowControl::Pause);
                    continue;
                }
            }
            self.rxbuf.borrow_mut().push_back(ch);
        }
        Poll::Ready(Ok(()))
    }
}

impl<T: Uart> Uart for SoftwareFlowControl<T> {
    fn get_baudrate(&self) -> Result<u32> {
        self.inner.get_baudrate()
    }

    /// Sets the UART baudrate.  May do nothing for virtual UARTs.
    fn set_baudrate(&self, baudrate: u32) -> Result<()> {
        self.inner.set_baudrate(baudrate)
    }

    fn get_flow_control(&self) -> Result<FlowControl> {
        Ok(self.flow_control.get())
    }

    fn set_flow_control(&self, flow_control: bool) -> Result<()> {
        self.flow_control.set(match flow_control {
            false => FlowControl::None,
            // When flow-control is enabled, assume we haven't
            // already been put into a pause state.
            true => FlowControl::Resume,
        });
        Ok(())
    }

    fn get_device_path(&self) -> Result<String> {
        self.inner.get_device_path()
    }

    fn poll_read(&self, cx: &mut Context<'_>, buf: &mut [u8]) -> Poll<Result<usize>> {
        let mut rxbuf = self.rxbuf.borrow_mut();

        while rxbuf.is_empty() {
            drop(rxbuf);
            ready!(self.poll_read_to_buffer(cx))?;
            rxbuf = self.rxbuf.borrow_mut();
        }

        // `VecDeque` can be viewed as two slices.
        let (front, back) = rxbuf.as_slices();

        let front_copy = std::cmp::min(buf.len(), front.len());
        buf[..front_copy].copy_from_slice(&front[..front_copy]);

        let back_copy = std::cmp::min(buf.len() - front_copy, back.len());
        buf[front_copy..][..back_copy].copy_from_slice(&back[..back_copy]);

        let copy_len = front_copy + back_copy;
        rxbuf.drain(..copy_len);
        Poll::Ready(Ok(copy_len))
    }

    /// Writes data from `buf` to the UART.
    fn write(&self, buf: &[u8]) -> Result<()> {
        if self.flow_control.get() == FlowControl::None {
            return self.inner.write(buf);
        }

        // The constant of 10 is approximately 10 uart bit times per byte.
        let pacing = Duration::from_nanos(10 * 1_000_000_000u64 / (self.get_baudrate()? as u64));
        log::debug!(
            "flow control: {:?}, pacing = {:?}",
            self.flow_control.get(),
            pacing
        );

        for b in buf.iter() {
            // If flow control is enabled, read data from the input stream and
            // process the flow control chars.
            loop {
                let _ = self.poll_read_to_buffer(&mut Context::from_waker(Waker::noop()))?;
                // If we're ok to send, then break out of the flow-control loop and send the data.
                if self.flow_control.get() == FlowControl::Resume {
                    break;
                }
                // Sleep one uart character time to avoid busy polling the UART.
                std::thread::sleep(pacing);
            }
            self.inner
                .write(std::slice::from_ref(b))
                .context("UART write error")?;
            // Sleep one uart character time after writing to the uart to pace characters into the
            // usb-serial device so that we don't fill any device-internal buffers.  The Chip Whisperer board (for
            // example) appears to have a large internal buffer that will keep transmitting to OT
            // even if an XOFF is sent.
            std::thread::sleep(pacing);
        }
        Ok(())
    }

    fn set_break(&self, enable: bool) -> Result<()> {
        self.inner.set_break(enable)
    }

    fn set_parity(&self, parity: Parity) -> Result<()> {
        self.inner.set_parity(parity)
    }

    /// Clears the UART RX buffer.
    fn clear_rx_buffer(&self) -> Result<()> {
        self.rxbuf.borrow_mut().clear();

        // Clear the host input buffer.
        self.inner.clear_rx_buffer()
    }
}