opentitanlib/transport/common/
uart.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
// Copyright lowRISC contributors (OpenTitan project).
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0

use std::cell::{Cell, RefCell};
use std::collections::VecDeque;
use std::io::{ErrorKind, Read, Write};
use std::os::fd::{AsRawFd, BorrowedFd};
use std::time::Duration;

use anyhow::{Context, Result};
use serialport::{ClearBuffer, Parity, SerialPort, TTYPort};

//use crate::io::uart::{Uart, UartError};
use crate::io::uart::{FlowControl, Uart, UartError};
use crate::transport::TransportError;
use crate::util;

/// Implementation of the `Uart` trait on top of a serial device, such as `/dev/ttyUSB0`.
pub struct SerialPortUart {
    port_name: String,
    flow_control: Cell<FlowControl>,
    port: RefCell<TTYPort>,
    rxbuf: RefCell<VecDeque<u8>>,
    pseudo_baud: Cell<u32>,
}

impl SerialPortUart {
    // Not really forever, but close enough.  I'd rather use Duration::MAX, but
    // it seems that the serialport library can compute an invalid `timeval` struct
    // to pass to `poll`, which then leads to an `Invalid argument` error when
    // trying to `read` or `write` without a timeout.  One hundred years should be
    // longer than any invocation of this program.
    const FOREVER: Duration = Duration::from_secs(100 * 365 * 86400);

    /// Open the given serial device, such as `/dev/ttyUSB0`.
    pub fn open(port_name: &str, baud: u32) -> Result<Self> {
        let port = TTYPort::open(&serialport::new(port_name, baud).preserve_dtr_on_open())
            .map_err(|e| UartError::OpenError(e.to_string()))?;
        flock_serial(&port, port_name)?;
        Ok(SerialPortUart {
            port_name: port_name.to_string(),
            flow_control: Cell::new(FlowControl::None),
            port: RefCell::new(port),
            rxbuf: RefCell::default(),
            pseudo_baud: Cell::new(0),
        })
    }

    /// Open a pseudo port (e.g. a verilator pts device).
    pub fn open_pseudo(port_name: &str, baud: u32) -> Result<Self> {
        let port = TTYPort::open(&serialport::new(port_name, baud).preserve_dtr_on_open())
            .map_err(|e| UartError::OpenError(e.to_string()))?;
        flock_serial(&port, port_name)?;
        Ok(SerialPortUart {
            port_name: port_name.to_string(),
            flow_control: Cell::new(FlowControl::None),
            port: RefCell::new(port),
            rxbuf: RefCell::default(),
            pseudo_baud: Cell::new(baud),
        })
    }

    fn read_worker(&self, timeout: Duration) -> Result<()> {
        let mut buf = [0u8; 256];
        let mut port = self.port.borrow_mut();

        port.set_timeout(timeout).context("UART read error")?;
        let result = port.read(&mut buf);
        let len = match result {
            Ok(n) => n,
            Err(ioerr) if ioerr.kind() == ErrorKind::TimedOut => 0,
            Err(e) => return Err(e.into()),
        };
        for &ch in &buf[..len] {
            if self.flow_control.get() != FlowControl::None {
                if ch == FlowControl::Resume as u8 {
                    log::debug!("Got RESUME");
                    self.flow_control.set(FlowControl::Resume);
                    continue;
                } else if ch == FlowControl::Pause as u8 {
                    log::debug!("Got PAUSE");
                    self.flow_control.set(FlowControl::Pause);
                    continue;
                }
            }
            self.rxbuf.borrow_mut().push_back(ch);
        }
        port.set_timeout(Self::FOREVER).context("UART read error")?;
        Ok(())
    }

    fn read_buffer(&self, buf: &mut [u8]) -> Result<usize> {
        let mut rxbuf = self.rxbuf.borrow_mut();
        let mut i = 0;
        for byte in buf.iter_mut() {
            let Some(rx) = rxbuf.pop_front() else {
                break;
            };
            *byte = rx;
            i += 1;
        }
        Ok(i)
    }
}

impl Uart for SerialPortUart {
    /// Returns the UART baudrate.  May return zero for virtual UARTs.
    fn get_baudrate(&self) -> Result<u32> {
        let pseudo = self.pseudo_baud.get();
        if pseudo == 0 {
            self.port.borrow().baud_rate().context("getting baudrate")
        } else {
            Ok(pseudo)
        }
    }

    /// Sets the UART baudrate.  May do nothing for virtual UARTs.
    fn set_baudrate(&self, baudrate: u32) -> Result<()> {
        let pseudo = self.pseudo_baud.get();
        if pseudo == 0 {
            self.port
                .borrow_mut()
                .set_baud_rate(baudrate)
                .map_err(|_| UartError::InvalidSpeed(baudrate))?;
        } else {
            self.pseudo_baud.set(baudrate);
        }
        Ok(())
    }

    fn set_flow_control(&self, flow_control: bool) -> Result<()> {
        self.flow_control.set(match flow_control {
            false => FlowControl::None,
            // When flow-control is enabled, assume we're haven't
            // already been put into a pause state.
            true => FlowControl::Resume,
        });
        Ok(())
    }

    fn get_device_path(&self) -> Result<String> {
        Ok(self.port_name.clone())
    }

    /// Reads UART receive data into `buf`, returning the number of bytes read.
    /// The `timeout` may be used to specify a duration to wait for data.
    fn read_timeout(&self, buf: &mut [u8], timeout: Duration) -> Result<usize> {
        if self.rxbuf.borrow().is_empty() {
            self.read_worker(timeout)?;
        }
        self.read_buffer(buf)
    }

    /// Reads UART receive data into `buf`, returning the number of bytes read.
    /// This function _may_ block.
    fn read(&self, buf: &mut [u8]) -> Result<usize> {
        self.read_timeout(buf, Self::FOREVER)
    }

    /// Writes data from `buf` to the UART.
    fn write(&self, buf: &[u8]) -> Result<()> {
        // The constant of 10 is approximately 10 uart bit times per byte.
        let pacing = Duration::from_nanos(10 * 1_000_000_000u64 / (self.get_baudrate()? as u64));
        log::debug!(
            "flow control: {:?}, pacing = {:?}",
            self.flow_control.get(),
            pacing
        );

        if self.flow_control.get() == FlowControl::None {
            // Perform blocking write of all bytes in `buf` even if the mio library has put the
            // file descriptor into non-blocking mode.
            let mut port = self.port.borrow_mut();
            let mut idx = 0;
            while idx < buf.len() {
                match port.write(&buf[idx..]) {
                    Ok(n) => idx += n,
                    Err(ioerr) if ioerr.kind() == ErrorKind::TimedOut => {
                        // Buffers are full, file descriptor is non-blocking.  Explicitly wait for
                        // this one file descriptor to again become ready for writing.  Since this
                        // is a UART, we know that it will become ready in bounded time.
                        util::file::wait_timeout(
                            // SAFETY: The file descriptor is owned by `port` and is valid.
                            unsafe { BorrowedFd::borrow_raw(port.as_raw_fd()) },
                            rustix::event::PollFlags::OUT,
                            Duration::from_secs(5),
                        )?;
                    }
                    Err(ioerr) => return Err(ioerr).context("UART communication error"),
                }
            }
            return Ok(());
        }

        for b in buf.iter() {
            // If flow control is enabled, read data from the input stream and
            // process the flow control chars.
            loop {
                self.read_worker(Duration::ZERO)?;
                // If we're ok to send, then break out of the flow-control loop and send the data.
                if self.flow_control.get() == FlowControl::Resume {
                    break;
                }
            }
            self.port
                .borrow_mut()
                .write_all(std::slice::from_ref(b))
                .context("UART write error")?;
            // Sleep one uart character time after writing to the uart to pace characters into the
            // usb-serial device so that we don't fill any device-internal buffers.  The Chip Whisperer board (for
            // example) appears to have a large internal buffer that will keep transmitting to OT
            // even if an XOFF is sent.
            std::thread::sleep(pacing);
        }
        Ok(())
    }

    fn set_break(&self, enable: bool) -> Result<()> {
        let port = self.port.borrow_mut();
        if enable {
            port.set_break()?;
        } else {
            port.clear_break()?;
        }
        Ok(())
    }

    fn set_parity(&self, parity: Parity) -> Result<()> {
        self.port.borrow_mut().set_parity(parity)?;
        Ok(())
    }

    /// Clears the UART RX buffer.
    fn clear_rx_buffer(&self) -> Result<()> {
        self.rxbuf.borrow_mut().clear();
        self.port.borrow_mut().clear(ClearBuffer::Input)?;
        Ok(())
    }

    fn supports_nonblocking_read(&self) -> Result<bool> {
        Ok(true)
    }

    fn register_nonblocking_read(&self, registry: &mio::Registry, token: mio::Token) -> Result<()> {
        let port: &mut TTYPort = &mut self.port.borrow_mut();
        registry.register(
            &mut mio::unix::SourceFd(&port.as_raw_fd()),
            token,
            mio::Interest::READABLE,
        )?;
        Ok(())
    }
}

/// Invoke Linux `flock()` on the given serial port, lock will be released when the file
/// descriptor is closed (or when the process terminates).
pub fn flock_serial(port: &TTYPort, port_name: &str) -> Result<()> {
    // SAFETY: `fd` is owned by `port` and is valid.
    let fd = unsafe { BorrowedFd::borrow_raw(port.as_raw_fd()) };
    rustix::fs::flock(fd, rustix::fs::FlockOperation::NonBlockingLockExclusive).map_err(|_| {
        TransportError::OpenError(port_name.to_string(), "Device is locked".to_string())
    })?;
    Ok(())
}