1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
// Copyright lowRISC contributors (OpenTitan project).
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0

use anyhow::{bail, ensure, Result};
use clap::ValueEnum;
use serde::{Deserialize, Serialize};
use std::borrow::Borrow;
use std::rc::Rc;
use std::thread;
use std::time::{Duration, Instant};
use thiserror::Error;

use crate::io::gpio;
use crate::io::i2c;
use crate::io::spi;
use crate::tpm::access::TpmAccess;
use crate::tpm::status::TpmStatus;

/// Tpm registers, can be specified in command line arguments.
#[allow(non_camel_case_types)]
#[derive(Debug, Clone, Copy, Serialize, Deserialize, PartialEq, Eq, ValueEnum)]
#[value(rename_all = "verbatim")]
pub enum Register {
    ACCESS,
    INT_ENABLE,
    INT_VECTOR,
    INT_STATUS,
    INTF_CAPABILITY,
    STS,
    DATA_FIFO,
    INTERFACE_ID,
    XDATA_FIFO,
    DID_VID,
    RID,
}

impl Register {
    /// Size of given TPM register in bytes, `None` means variable size.
    pub fn size(&self) -> Option<usize> {
        Some(match *self {
            Self::ACCESS => 1,
            Self::INT_ENABLE => 4,
            Self::INT_VECTOR => 4,
            Self::INT_STATUS => 4,
            Self::INTF_CAPABILITY => 4,
            Self::STS => 4,
            Self::DATA_FIFO => return None,
            Self::INTERFACE_ID => 4,
            Self::XDATA_FIFO => return None,
            Self::DID_VID => 4,
            Self::RID => 4,
        })
    }
}

/// Errors relating to TPM communication.
#[derive(Error, Debug)]
pub enum TpmError {
    #[error("TPM timeout")]
    Timeout,
    #[error("Unexpected response size {0}")]
    UnexpectedResponseSize(usize),
    #[error("Response incomplete. Missing {0} bytes.")]
    ResponseIncomplete(usize),
    #[error("Failed to get status")]
    ReadStatusFail,
    #[error("Timeout polling for response")]
    ResponseTimeout,
}

/// Low level interface for accessing TPM.  Separate implementations exist for SPI and I2C.
pub trait Driver {
    /// Initialize the TPM by claiming the access register.
    fn init(&self) -> Result<()> {
        self.write_register(
            Register::ACCESS,
            &TpmAccess::ACTIVE_LOCALITY.bits().to_be_bytes(),
        )?;
        self.write_register(
            Register::ACCESS,
            &TpmAccess::REQUEST_USE.bits().to_be_bytes(),
        )?;
        Ok(())
    }

    /// Read from the given TPM register, number of bytes to read given by length of data slice.
    fn read_register(&self, register: Register, data: &mut [u8]) -> Result<()>;

    /// Write to the given TPM register.
    fn write_register(&self, register: Register, data: &[u8]) -> Result<()>;

    /// Execute a TPM command and return the result as a `Vec<u8>` or time out.
    fn execute_command(&self, cmd: &[u8]) -> Result<Vec<u8>> {
        self.write_register(Register::STS, &TpmStatus::CMD_READY.to_le_bytes())?;

        log::debug!("RUN({}) {:02X?}", cmd.len(), cmd);
        self.poll_for_ready()?;
        for slice in cmd.chunks(MAX_TRANSACTION_SIZE) {
            self.write_register(Register::DATA_FIFO, slice)?;
        }
        self.write_register(Register::STS, &TpmStatus::TPM_GO.to_le_bytes())?;

        let sz = self
            .poll_for_data_available()?
            .burst_count()
            .max(RESPONSE_HEADER_SIZE)
            .min(MAX_TRANSACTION_SIZE);
        let mut result: Vec<u8> = vec![0; sz];
        self.read_register(Register::DATA_FIFO, result.as_mut_slice())?;
        let resp_size: usize = u32::from_be_bytes(result[2..6].try_into().unwrap()) as usize;
        ensure!(
            resp_size < MAX_RESPONSE_SIZE,
            TpmError::UnexpectedResponseSize(resp_size)
        );
        let mut remaining = resp_size - sz;

        let mut sts = self.read_status()?;
        while sts.is_valid() && sts.data_available() && remaining > 0 {
            let to_read: usize = remaining.min(MAX_TRANSACTION_SIZE);
            let mut result2: Vec<u8> = vec![0; to_read];
            self.read_register(Register::DATA_FIFO, result2.as_mut_slice())?;
            result.append(&mut result2);
            remaining -= to_read;
            sts = self.read_status()?;
        }
        ensure!(remaining == 0, TpmError::ResponseIncomplete(remaining));
        log::debug!("RES({}) {:02X?}", result.len(), result.as_slice());

        // Return to idle state.
        self.write_register(Register::STS, &TpmStatus::CMD_READY.to_le_bytes())?;

        Ok(result)
    }

    /// Fetches the current status.
    fn read_status(&self) -> Result<TpmStatus> {
        let mut out = [0u8; 4];
        let res = self.read_register(Register::STS, &mut out);
        if res.is_ok() {
            Ok(TpmStatus::from_bytes(out))
        } else {
            log::error!("Failed to read status");
            Err(TpmError::ReadStatusFail.into())
        }
    }

    /// Poll the status register until the status is valid and data is available or time out.
    fn poll_for_data_available(&self) -> Result<TpmStatus> {
        // Some TPM operations, such as generating RSA keys can take several minutes.
        const STATUS_POLL_TIMEOUT: Duration = Duration::from_secs(5 * 60);
        let deadline = Instant::now() + STATUS_POLL_TIMEOUT;
        let mut sts = self.read_status()?;
        // If the device is busy and doesn't actually respond, the status comes back as !0. This
        // will look like a valid status with a full FIFO, so ignore this case.
        while !sts.is_valid()
            || !sts.data_available()
            || sts.raw_value() == !0
            // Sometimes the status returns shifted. Detect that here.
            || (sts.raw_value() & 0xFF) == 0xFF
        {
            if Instant::now() > deadline {
                log::error!("Status poll timeout.");
                return Err(TpmError::ResponseTimeout.into());
            }
            sts = self.read_status()?;
            thread::sleep(Duration::from_millis(10));
        }
        Ok(sts)
    }

    /// Poll the status register until the status is valid and the tpm is ready or time out.
    fn poll_for_ready(&self) -> Result<TpmStatus> {
        const STATUS_POLL_TIMEOUT: Duration = Duration::from_millis(30000);
        let deadline = Instant::now() + STATUS_POLL_TIMEOUT;
        let mut sts = self.read_status()?;
        // If the device is busy and doesn't actually respond, the status comes back as !0. This
        // will look like a valid status with a full FIFO, so ignore this case.
        while !sts.is_valid()
            || !sts.is_ready()
            || sts.raw_value() == !0
            // Sometimes the status returns shifted. Detect that here.
            || (sts.raw_value() & 0xFF) == 0xFF
        {
            ensure!(Instant::now() <= deadline, TpmError::Timeout);
            sts = self.read_status()?;
            thread::sleep(Duration::from_millis(10));
        }
        Ok(sts)
    }
}

type GpioPinAndMonitoring = (Rc<dyn gpio::GpioPin>, Rc<dyn gpio::GpioMonitoring>);

fn wait_for_gsc_ready(gsc_ready_pin: &Option<GpioPinAndMonitoring>) -> Result<()> {
    let Some((gsc_ready_pin, monitoring)) = gsc_ready_pin else {
        return Ok(());
    };
    let start_time = Instant::now();
    while !monitoring
        .monitoring_read(&[gsc_ready_pin.borrow()], true)?
        .events
        .into_iter()
        .any(|e| e.edge == gpio::Edge::Falling)
    {
        if Instant::now().duration_since(start_time) > TIMEOUT {
            bail!(TpmError::Timeout)
        }
    }
    Ok(())
}

/// Implementation of the low level interface via standard SPI protocol.
pub struct SpiDriver {
    spi: Rc<dyn spi::Target>,
    gsc_ready_pin: Option<(Rc<dyn gpio::GpioPin>, Rc<dyn gpio::GpioMonitoring>)>,
}

impl SpiDriver {
    pub fn new(
        spi: Rc<dyn spi::Target>,
        gsc_ready_pin: Option<(Rc<dyn gpio::GpioPin>, Rc<dyn gpio::GpioMonitoring>)>,
    ) -> Result<Self> {
        if let Some((gsc_ready_pin, monitoring)) = &gsc_ready_pin {
            // Set up monitoring of edges on the GSC ready pin.  This will be more efficient than
            // starting/stopping the monitoring on each TPM operation.
            monitoring.monitoring_start(&[gsc_ready_pin.borrow()])?;
        }
        Ok(Self { spi, gsc_ready_pin })
    }

    /// Numerical TPM register address as used in SPI protocol.
    pub fn addr(register: Register) -> u16 {
        match register {
            Register::ACCESS => 0x0000,
            Register::INT_ENABLE => 0x0008,
            Register::INT_VECTOR => 0x000C,
            Register::INT_STATUS => 0x0010,
            Register::INTF_CAPABILITY => 0x0014,
            Register::STS => 0x0018,
            Register::DATA_FIFO => 0x0024,
            Register::INTERFACE_ID => 0x0030,
            Register::XDATA_FIFO => 0x0080,
            Register::DID_VID => 0x0F00,
            Register::RID => 0x0F04,
        }
    }

    fn compose_header(&self, register: Register, len: usize, is_read: bool) -> [u8; 4] {
        let mut req: u32 = ((len as u32 - 1) << SPI_TPM_DATA_LEN_POS)
            | SPI_TPM_ADDRESS_OFFSET
            | (Self::addr(register) as u32);
        if is_read {
            req |= SPI_TPM_READ;
        } else {
            req |= SPI_TPM_WRITE;
        }
        req.to_be_bytes()
    }

    /// Write a transaction header for the given register and length.
    fn write_header(&self, register: Register, len: usize, is_read: bool) -> Result<()> {
        let mut buffer = [0u8; 4];
        let req = self.compose_header(register, len, is_read);
        self.spi
            .run_transaction(&mut [spi::Transfer::Both(&req, &mut buffer)])?;
        // The TPM has a chance to indicate that it is ready to produce the response in the very
        // next byte.  As the fourth and final byte of the header is being sent, if the TPM sends
        // back 0x01 on the other data line, data will come next.
        if buffer[3] & 1 == 0 {
            // The TPM was not immediately ready, keep polling, until we receive a byte of 0x01.
            let start_time = Instant::now();
            while {
                self.spi
                    .run_transaction(&mut [spi::Transfer::Read(&mut buffer[0..1])])?;
                buffer[0] & 1 == 0
            } {
                if Instant::now().duration_since(start_time) > TIMEOUT {
                    bail!(TpmError::Timeout)
                }
            }
        }
        Ok(())
    }

    fn do_read_register(&self, register: Register, data: &mut [u8]) -> Result<()> {
        let _cs_asserted = Rc::clone(&self.spi).assert_cs()?; // Deasserts when going out of scope.
        self.write_header(register, data.len(), true)?;
        self.spi.run_transaction(&mut [spi::Transfer::Read(data)])?;
        Ok(())
    }

    fn do_write_register(&self, register: Register, data: &[u8]) -> Result<()> {
        let _cs_asserted = Rc::clone(&self.spi).assert_cs()?; // Deasserts when going out of scope.
        self.write_header(register, data.len(), false)?;
        self.spi
            .run_transaction(&mut [spi::Transfer::Write(data)])?;
        Ok(())
    }
}

const SPI_TPM_READ: u32 = 0xC0000000;
const SPI_TPM_WRITE: u32 = 0x40000000;
const SPI_TPM_DATA_LEN_POS: u8 = 24;
const SPI_TPM_ADDRESS_OFFSET: u32 = 0x00D40000;

const MAX_TRANSACTION_SIZE: usize = 32;
const RESPONSE_HEADER_SIZE: usize = 6;
const MAX_RESPONSE_SIZE: usize = 4096;
const TIMEOUT: Duration = Duration::from_millis(500);

impl Driver for SpiDriver {
    fn read_register(&self, register: Register, data: &mut [u8]) -> Result<()> {
        if !self.spi.supports_bidirectional_transfer()? {
            // SPI transport does not support bidirectional transfer.  Assume that the TPM will
            // send 0x01 on the byte immediately following the fourth and final request byte.
            let req = self.compose_header(register, data.len(), true);
            let mut buffer = vec![0u8; data.len() + 1];
            self.spi.run_transaction(&mut [
                spi::Transfer::Write(&req),
                spi::Transfer::Read(&mut buffer),
            ])?;
            ensure!(buffer[0] & 1 != 0, "TPM did not respond as expected",);
            data.clone_from_slice(&buffer[1..]);
            return Ok(());
        }
        let result = self.do_read_register(register, data);
        if result.is_ok() {
            wait_for_gsc_ready(&self.gsc_ready_pin)?;
        }
        result
    }

    fn write_register(&self, register: Register, data: &[u8]) -> Result<()> {
        if !self.spi.supports_bidirectional_transfer()? {
            /*
             * SPI transport does not support bidirectional transfer.  Assume that the TPM will
             * send 0x01 on the byte immediately following the fourth and final request byte.
             */
            let req = self.compose_header(register, data.len(), true);
            let mut buffer = [0u8; 1];
            self.spi.run_transaction(&mut [
                spi::Transfer::Write(&req),
                spi::Transfer::Read(&mut buffer),
                spi::Transfer::Write(data),
            ])?;
            ensure!(buffer[0] & 1 != 0, "TPM did not respond as expected",);
            return Ok(());
        }
        let result = self.do_write_register(register, data);
        if result.is_ok() {
            wait_for_gsc_ready(&self.gsc_ready_pin)?;
        }
        result
    }
}

impl Drop for SpiDriver {
    fn drop(&mut self) {
        if let Some((gsc_ready_pin, monitoring)) = &self.gsc_ready_pin {
            // Stop monitoring of the gsc_ready pin, by reading one final time.
            let _ = monitoring.monitoring_read(&[gsc_ready_pin.borrow()], false);
        }
    }
}

/// Implementation of the low level interface via Google I2C protocol.
pub struct I2cDriver {
    i2c: Rc<dyn i2c::Bus>,
    gsc_ready_pin: Option<(Rc<dyn gpio::GpioPin>, Rc<dyn gpio::GpioMonitoring>)>,
}

impl I2cDriver {
    pub fn new(
        i2c: Rc<dyn i2c::Bus>,
        gsc_ready_pin: Option<(Rc<dyn gpio::GpioPin>, Rc<dyn gpio::GpioMonitoring>)>,
    ) -> Result<Self> {
        if let Some((gsc_ready_pin, monitoring)) = &gsc_ready_pin {
            // Set up monitoring of edges on the GSC ready pin.  This will be more efficient than
            // starting/stopping the monitoring on each TPM operation.
            monitoring.monitoring_start(&[gsc_ready_pin.borrow()])?;
        }
        Ok(Self { i2c, gsc_ready_pin })
    }

    /// Numerical TPM register address as used in Google I2C protocol.
    pub fn addr(reg: Register) -> Option<u8> {
        match reg {
            Register::ACCESS => Some(0x00),
            Register::STS => Some(0x01),
            Register::DATA_FIFO => Some(0x05),
            Register::DID_VID => Some(0x06),
            _ => None,
        }
    }

    fn try_read_register(&self, register: Register, data: &mut [u8]) -> Result<()> {
        if self.gsc_ready_pin.is_none() {
            // Do two I2C transfers in one call, for lowest latency.
            self.i2c.run_transaction(
                None, /* default addr */
                &mut [
                    i2c::Transfer::Write(&[Self::addr(register).unwrap()]),
                    i2c::Transfer::Read(data),
                ],
            )
        } else {
            // Since we need to check for the GSC ready signal in between, we have to do one I2C
            // transfer at a time, and tolerate the latency of multiple roundtrip.
            self.i2c.run_transaction(
                None, /* default addr */
                &mut [i2c::Transfer::Write(&[Self::addr(register).unwrap()])],
            )?;
            wait_for_gsc_ready(&self.gsc_ready_pin)?;
            self.i2c.run_transaction(
                None, /* default addr */
                &mut [i2c::Transfer::Read(data)],
            )
        }
    }
}

impl Driver for I2cDriver {
    fn read_register(&self, register: Register, data: &mut [u8]) -> Result<()> {
        const MAX_TRIES: usize = 10;
        let mut count = 0;
        // Retry in case the I2C bus wasn't ready.
        let res = loop {
            count += 1;
            match self.try_read_register(register, data) {
                Err(e) => {
                    log::trace!(
                        "Register 0x{:X} access error: {}",
                        Self::addr(register).unwrap(),
                        e
                    );
                    if count == MAX_TRIES {
                        break Err(e);
                    }
                }
                Ok(()) => {
                    if count > 1 {
                        log::trace!("Success after {} tries.", count);
                    }
                    break Ok(());
                }
            }
            thread::sleep(Duration::from_millis(100));
        };
        if res.is_err() {
            log::error!("Failed to read TPM register.");
        }
        res
    }

    fn write_register(&self, register: Register, data: &[u8]) -> Result<()> {
        let mut buffer = vec![Self::addr(register).unwrap()];
        buffer.extend_from_slice(data);
        self.i2c.run_transaction(
            None, /* default addr */
            &mut [i2c::Transfer::Write(&buffer)],
        )?;
        wait_for_gsc_ready(&self.gsc_ready_pin)?;
        Ok(())
    }
}

impl Drop for I2cDriver {
    fn drop(&mut self) {
        if let Some((gsc_ready_pin, monitoring)) = &self.gsc_ready_pin {
            // Stop monitoring of the gsc_ready pin, by reading one final time.
            let _ = monitoring.monitoring_read(&[gsc_ready_pin.borrow()], false);
        }
    }
}