opentitanlib/test_utils/
load_sram_program.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
// Copyright lowRISC contributors (OpenTitan project).
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0

use std::fs;
use std::path::PathBuf;
use std::str::FromStr;
use std::time::Duration;

use anyhow::{ensure, Context, Result};
use bindgen::sram_program::{SRAM_MAGIC_SP_CRC_ERROR, SRAM_MAGIC_SP_EXECUTION_DONE};
use byteorder::{ByteOrder, LittleEndian, WriteBytesExt};
use clap::Args;
use crc::Crc;
use object::{Object, ObjectSection, ObjectSegment, SectionKind};
use serde::{Deserialize, Serialize};
use thiserror::Error;

use crate::impl_serializable_error;
use crate::io::jtag::{Jtag, RiscvCsr, RiscvGpr, RiscvReg};
use crate::util::parse_int::ParseInt;
use crate::util::vmem::Vmem;

use top_earlgrey::top_earlgrey;

/// Command-line parameters.
#[derive(Debug, Args, Clone, Default)]
pub struct SramProgramParams {
    /// Path to the ELF file to load.
    #[arg(long, default_value = None)]
    pub elf: Option<PathBuf>,

    /// Path to the VMEM file to load.
    #[arg(long, conflicts_with = "elf", default_value = None)]
    pub vmem: Option<PathBuf>,

    /// Address where to load the VMEM file.
    #[arg(long, value_parser = <u32 as ParseInt>::from_str, conflicts_with="elf", default_value = None)]
    pub load_addr: Option<u32>,
}

/// Describe a file to load to SRAM.
#[derive(Debug, Clone)]
pub enum SramProgramFile {
    Vmem { path: PathBuf, load_addr: u32 },
    Elf(PathBuf),
}

impl SramProgramParams {
    // Convert the command line parameters into a nicer structure.
    pub fn get_file(&self) -> SramProgramFile {
        if let Some(path) = &self.vmem {
            SramProgramFile::Vmem {
                path: path.clone(),
                load_addr: self
                    .load_addr
                    .expect("you must provide a load address for a VMEM file"),
            }
        } else {
            SramProgramFile::Elf(
                self.elf
                    .as_ref()
                    .expect("you must provide either an ELF file or a VMEM file")
                    .clone(),
            )
        }
    }

    pub fn load(&self, jtag: &mut dyn Jtag) -> Result<SramProgramInfo> {
        load_sram_program(jtag, &self.get_file())
    }

    pub fn load_and_execute(
        &self,
        jtag: &mut dyn Jtag,
        exec_mode: ExecutionMode,
    ) -> Result<ExecutionResult> {
        load_and_execute_sram_program(jtag, &self.get_file(), exec_mode)
    }
}

/// Execution mode for a SRAM program.
pub enum ExecutionMode {
    /// Jump to the loading address and let the program run forever.
    Jump,
    /// Jump at the loading address and immediately halt execution.
    JumpAndHalt,
    /// Jump at the loading address and wait for the core to halt or timeout.
    JumpAndWait(Duration),
}

/// Detail of execution error of a SRAM program.
#[derive(Debug, Deserialize, Serialize)]
pub enum ExecutionError {
    /// Unknown error.
    Unknown,
    /// The SRAM program loader reported a CRC self-check error.
    CrcMismatch,
}

/// Result of execution of a SRAM program.
#[derive(Debug, Deserialize, Serialize)]
pub enum ExecutionResult {
    /// (JumpAndHalt only) Execution is halted at the beginning.
    HaltedAtStart,
    /// (Jump only) Execution is ongoing.
    Executing,
    /// (JumpAndWait only) Execution successfully stopped.
    ///
    /// The content of register `a0` is returned.
    ExecutionDone(u32),
    /// (JumpAndWait only) Execution did not finish it time or an error occurred.
    ExecutionError(ExecutionError),
}

/// Errors related to loading an SRAM program.
#[derive(Error, Debug, Deserialize, Serialize)]
pub enum LoadSramProgramError {
    #[error("SRAM ELF programs must be 32-bit binaries")]
    Not32Bit,
    #[error(
        "SRAM program contains segments whose address or size is not a multiple of the word size"
    )]
    SegmentNotWordAligned,
    #[error("SRAM program must be compiled with the `-nmagic` flag")]
    NotCompiledWithNmagic,
    #[error("SRAM program's segments must be consecutive")]
    GapBetweenSegments,
    #[error("Data readback from the SRAM mismatches from the data loaded")]
    ReadbackMismatch,
    #[error("SRAM program entry point is not contained in any text section")]
    EntryPointNotFound,
    #[error("Generic error {0}")]
    Generic(String),
}
impl_serializable_error!(LoadSramProgramError);

/// Information about the loaded SRAM program
pub struct SramProgramInfo {
    /// Address of the entry point.
    pub entry_point: u32,
    /// CRC32 of the entire data.
    pub crc32: u32,
}

/// Load a program into SRAM using JTAG (VMEM files).
pub fn load_vmem_sram_program(
    jtag: &mut dyn Jtag,
    vmem_filename: &PathBuf,
    load_addr: u32,
) -> Result<SramProgramInfo> {
    log::info!("Loading VMEM file {}", vmem_filename.display());
    let vmem_content = fs::read_to_string(vmem_filename)?;
    let mut vmem = Vmem::from_str(&vmem_content)?;
    vmem.merge_sections();
    log::info!("Uploading program to SRAM at {:x}", load_addr);
    let crc = Crc::<u32>::new(&crc::CRC_32_ISO_HDLC);
    let mut digest = crc.digest();
    for section in vmem.sections() {
        log::info!(
            "Load {} words at address {:x}",
            section.data.len(),
            load_addr + section.addr
        );
        jtag.write_memory32(load_addr + section.addr, &section.data)?;
        // Update CRC
        let mut data8: Vec<u8> = vec![];
        for elem in &section.data {
            data8.write_u32::<LittleEndian>(*elem).unwrap();
        }
        digest.update(&data8);
    }
    Ok(SramProgramInfo {
        entry_point: load_addr,
        crc32: digest.finalize(),
    })
}

/// Load a program into SRAM using JTAG (ELF files).
pub fn load_elf_sram_program(
    jtag: &mut dyn Jtag,
    elf_filename: &PathBuf,
) -> Result<SramProgramInfo> {
    log::info!("Loading ELF file {}", elf_filename.display());
    let file_data = std::fs::read(elf_filename)
        .with_context(|| format!("Could not read ELF file {}.", elf_filename.display()))?;
    let file = object::File::parse(&*file_data)
        .with_context(|| format!("Could not parse ELF file {}", elf_filename.display()))?;
    ensure!(!file.is_64(), LoadSramProgramError::Not32Bit);
    log::info!("Uploading program to SRAM");

    // By default, linkers produces ELF files where all segments are aligned to the page size,
    // so the operating system can use mmap to load the program into memory (known as demand
    // paging).
    //
    // Here is an example:
    //
    // Section Headers:
    //   [Nr] Name              Type            Addr     Off    Size   ES Flg Lk Inf Al
    //   [ 0]                   NULL            00000000 000000 000000 00      0   0  0
    //   [ 1] .text             PROGBITS        10001fc8 000fc8 0064ea 00  AX  0   0  4
    //   [ 2] .rodata           PROGBITS        100084b8 0074b8 0016de 00   A  0   0  8
    //   [ 3] .data             PROGBITS        10009b98 008b98 000084 00  WA  0   0  4
    //   [ 4] .sdata            PROGBITS        10009c1c 008c1c 000000 00   W  0   0  4
    //   [ 5] .bss              NOBITS          10009c1c 008c1c 001f6c 00  WA  0   0  4
    //
    // Program Headers:
    //   Type           Offset   VirtAddr   PhysAddr   FileSiz MemSiz  Flg Align
    //   LOAD           0x000000 0x10001000 0x10001000 0x08c1c 0x0ab88 RWE 0x1000
    //   GNU_STACK      0x000000 0x00000000 0x00000000 0x00000 0x00000 RW  0x10
    //
    // Note that the segment starts at 0x10001000 but .text starts at 0x10001fc8, so loading
    // the segment would actually overwrite the beginning of the SRAM (static critical data).
    // Also note that there is a 6-byte gap between the end of .text and the beginning of .rodata
    // because .rodata needs a bigger alignment.
    //
    // Demand paging has no use in embedded environment, and as shown above, if we load the
    // program using the segments we could overwrite data unintentionally. Furthermore there will
    // be an inconsistency between data loaded this way and data loaded via VMEM because the gap
    // at the beginning is ignored by objcopy and is not covered by the CRC.
    //
    // Fortunately there is a flag, confusingly named as `nmagic`, that changes the behaviour and
    // disables this excessive alignment. The code below has a sanity check to ensure that the
    // program is indeed compiled with `nmagic` enabeld by making sure tha the alignment does not
    // exceed 8.
    let crc = Crc::<u32>::new(&crc::CRC_32_ISO_HDLC);
    let mut digest = crc.digest();
    let mut last_address: Option<u32> = None;
    for segment in file.segments() {
        let address = segment.address();
        let data = segment.data()?;

        if data.is_empty() {
            continue;
        }

        // It is much faster to load data word by word instead of bytes by bytes.
        // The linker script always ensures that we the address and size are multiple of 4.
        const WORD_SIZE: usize = std::mem::size_of::<u32>();
        ensure!(
            address % WORD_SIZE as u64 == 0 && data.len() % WORD_SIZE == 0,
            LoadSramProgramError::SegmentNotWordAligned
        );
        ensure!(
            segment.align() <= 256,
            LoadSramProgramError::NotCompiledWithNmagic
        );
        // A sanity check to ensure that there are no gaps between segments.
        if let Some(last_addr) = last_address {
            let gap_size = address as i32 - last_addr as i32;
            ensure!(gap_size == 0, LoadSramProgramError::GapBetweenSegments);
        }
        // Write segment's data.
        log::info!(
            "Load segment: {} bytes at address {:x}",
            data.len(),
            address
        );
        let data32: Vec<u32> = data.chunks(4).map(LittleEndian::read_u32).collect();
        jtag.write_memory32(address as u32, &data32)?;
        digest.update(data);

        last_address = Some((address + data.len() as u64) as u32);
    }

    // We verify (read back and compare) the data from the section that contains the entry point.
    // The rationale is that if the CRC code is corrupted, it could execute the SRAM program even though
    // it should not. By verifying just the tiny bit of code that checks the CRC, we can ensure that the
    // entire program is validated.
    let mut entry_found = false;
    for section in file.sections() {
        if section.kind() != SectionKind::Text {
            continue;
        }

        // If this section contains the entry point, read back the data and compare.
        if (section.address()..(section.address() + section.size())).contains(&file.entry()) {
            entry_found = true;

            let data32: Vec<u32> = section
                .data()?
                .chunks(4)
                .map(LittleEndian::read_u32)
                .collect();
            let mut read_data32 = vec![0u32; data32.len()];
            log::info!("Read back data to verify");
            jtag.read_memory32(section.address() as u32, &mut read_data32)?;
            ensure!(
                data32 == read_data32,
                LoadSramProgramError::ReadbackMismatch
            );
        }
    }
    ensure!(entry_found, LoadSramProgramError::EntryPointNotFound);

    Ok(SramProgramInfo {
        entry_point: file.entry() as u32,
        crc32: digest.finalize(),
    })
}

/// Load a program into SRAM using JTAG. Returns the address of the entry point.
pub fn load_sram_program(jtag: &mut dyn Jtag, file: &SramProgramFile) -> Result<SramProgramInfo> {
    match file {
        SramProgramFile::Vmem { path, load_addr } => load_vmem_sram_program(jtag, path, *load_addr),
        SramProgramFile::Elf(path) => load_elf_sram_program(jtag, path),
    }
}

/// Set up the ePMP to enable read/write/execute from SRAM and read/write access
/// to the full MMIO region. Specifically, this function will:
/// 1. set the PMP entry 15 to NAPOT to cover the SRAM as RWX
/// 2. set the PMP entry 11 to TOR to cover the MMIO region as RW.
///
/// This follows the memory layout used by the ROM [0].
///
/// The Ibex core is initialized with a default ePMP configuration [3]
/// when it starts. This configuration has no PMP entry for the RAM, only
/// partial access to the MMIO region (e.g., RV_PLIC access is denied), and
/// mseccfg.mmwp is set to 1 so accesses that don't match a PMP entry will
/// be denied.
///
/// Before transferring the SRAM program to the device, we must configure the
/// PMP unit to enable reading, writing, and executing from SRAM, and reading
/// and writing to the entire MMIO region. Due to implementation details of
/// OpenTitan's hardware debug module, it is important that the RV_ROM remains
/// accessible at all times [1]. It uses entry 13 of the PMP on boot so we want
/// to preserve that. However, we can safely modify the other PMP configuration
/// registers.
///
/// In more detail, the problem is that our debug module implements the
/// "Access Register" abstract command by assembling instructions in the
/// program buffer and then executing the buffer. If one of those
/// instructions clobbers the PMP configuration register that allows
/// execution from the program buffer (PMP entry 13),
/// subsequent instruction fetches will generate exceptions.
///
/// Debug module concepts like abstract commands and the program buffer are
/// defined in "RISC-V External Debug Support Version 0.13.2" [2]. OpenTitan's
/// (vendored-in) implementation lives in hw/vendor/pulp_riscv_dbg.
///
/// [0]: https://opentitan.org/book/sw/device/silicon_creator/rom/doc/memory_protection.html
/// [1]: https://github.com/lowRISC/opentitan/issues/14978
/// [2]: https://riscv.org/wp-content/uploads/2019/03/riscv-debug-release.pdf
/// [3]: https://github.com/lowRISC/opentitan/blob/master/hw/ip/rv_core_ibex/rtl/ibex_pmp_reset.svh
pub fn prepare_epmp(jtag: &mut dyn Jtag) -> Result<()> {
    // Setup ePMP for SRAM execution.
    log::info!("Configure ePMP for SRAM execution.");
    let pmpcfg3 = jtag.read_riscv_reg(&RiscvReg::Csr(RiscvCsr::PMPCFG3))?;
    log::info!("Old value of pmpcfg3: {:x}", pmpcfg3);
    // Write "L NAPOT X W R" to pmpcfg3 in region 15.
    let pmpcfg3 = (pmpcfg3 & 0x00ffffffu32) | 0x9f000000;
    log::info!("New value of pmpcfg3: {:x}", pmpcfg3);
    jtag.write_riscv_reg(&RiscvReg::Csr(RiscvCsr::PMPCFG3), pmpcfg3)?;
    // Write pmpaddr15 to map the SRAM range.
    // hex((0x10000000 >> 2) | ((0x20000 - 1) >> 3)) = 0x4003fff
    let base = top_earlgrey::SRAM_CTRL_MAIN_RAM_BASE_ADDR as u32;
    let size = top_earlgrey::SRAM_CTRL_MAIN_RAM_SIZE_BYTES as u32;
    // Make sure that this is a power of two.
    assert!(size & (size - 1) == 0);
    let pmpaddr15 = (base >> 2) | ((size - 1) >> 3);
    log::info!("New value of pmpaddr15: {:x}", pmpaddr15);
    jtag.write_riscv_reg(&RiscvReg::Csr(RiscvCsr::PMPADDR15), pmpaddr15)?;

    // Setup ePMP for R/W access to MMIO region.
    log::info!("Configure ePMP for MMIO access.");
    let pmpcfg2 = jtag.read_riscv_reg(&RiscvReg::Csr(RiscvCsr::PMPCFG2))?;
    log::info!("Old value of pmpcfg2: {:x}", pmpcfg2);
    // Write "L TOR X W R" to pmpcfg2 in region 11.
    let pmpcfg2 = (pmpcfg2 & 0x00ffffffu32) | 0x8f000000;
    log::info!("New value of pmpcfg2: {:x}", pmpcfg2);
    jtag.write_riscv_reg(&RiscvReg::Csr(RiscvCsr::PMPCFG2), pmpcfg2)?;
    // Write pmpaddr10 and pmpaddr11 to map the MMIO range.
    let base = top_earlgrey::TOP_EARLGREY_MMIO_BASE_ADDR as u32;
    let size = top_earlgrey::TOP_EARLGREY_MMIO_SIZE_BYTES as u32;
    // make sure that this is a power of two
    assert!(size & (size - 1) == 0);
    let pmpaddr10 = base >> 2;
    let pmpaddr11 = (base + size) >> 2;
    log::info!("New value of pmpaddr10: {:x}", pmpaddr10);
    log::info!("New value of pmpaddr11: {:x}", pmpaddr11);
    jtag.write_riscv_reg(&RiscvReg::Csr(RiscvCsr::PMPADDR10), pmpaddr10)?;
    jtag.write_riscv_reg(&RiscvReg::Csr(RiscvCsr::PMPADDR11), pmpaddr11)?;

    Ok(())
}

/// Execute an already loaded SRAM program. It takes care of setting up the ePMP.
pub fn execute_sram_program(
    jtag: &mut dyn Jtag,
    prog_info: &SramProgramInfo,
    exec_mode: ExecutionMode,
) -> Result<ExecutionResult> {
    prepare_epmp(jtag)?;
    // To avoid unexpected behaviors, we always make sure that the return address
    // points to an invalid address.
    let ret_addr = 0xdeadbeefu32;
    log::info!("set RA to {:x}", ret_addr);
    jtag.write_riscv_reg(&RiscvReg::Gpr(RiscvGpr::RA), ret_addr)?;
    // The SRAM program loader expects the CRC32 value in a0
    log::info!("set A0 to {:x} (crc32)", prog_info.crc32);
    jtag.write_riscv_reg(&RiscvReg::Gpr(RiscvGpr::A0), prog_info.crc32)?;
    // OpenOCD takes care of invalidating the cache when resuming execution
    match exec_mode {
        ExecutionMode::Jump => {
            log::info!("resume execution at {:x}", prog_info.entry_point);
            jtag.resume_at(prog_info.entry_point)?;
            Ok(ExecutionResult::Executing)
        }
        ExecutionMode::JumpAndHalt => {
            log::info!("set DPC to {:x}", prog_info.entry_point);
            jtag.write_riscv_reg(&RiscvReg::Csr(RiscvCsr::DPC), prog_info.entry_point)?;
            Ok(ExecutionResult::HaltedAtStart)
        }
        ExecutionMode::JumpAndWait(tmo) => {
            log::info!("resume execution at {:x}", prog_info.entry_point);
            jtag.resume_at(prog_info.entry_point)?;
            log::info!("wait for execution to stop");
            jtag.wait_halt(tmo)?;
            jtag.halt()?;
            // The SRAM's crt has a protocol to notify us that execution returned: it sets
            // the stack pointer to a certain value.
            let sp = jtag.read_riscv_reg(&RiscvReg::Gpr(RiscvGpr::SP))?;
            match sp {
                SRAM_MAGIC_SP_EXECUTION_DONE => {
                    let a0 = jtag.read_riscv_reg(&RiscvReg::Gpr(RiscvGpr::A0))?;
                    Ok(ExecutionResult::ExecutionDone(a0))
                }
                SRAM_MAGIC_SP_CRC_ERROR => {
                    Ok(ExecutionResult::ExecutionError(ExecutionError::CrcMismatch))
                }
                _ => Ok(ExecutionResult::ExecutionError(ExecutionError::Unknown)),
            }
        }
    }
}

/// Loads and execute a SRAM program. It takes care of setting up the ePMP.
pub fn load_and_execute_sram_program(
    jtag: &mut dyn Jtag,
    file: &SramProgramFile,
    exec_mode: ExecutionMode,
) -> Result<ExecutionResult> {
    let prog_info = load_sram_program(jtag, file)?;
    execute_sram_program(jtag, &prog_info, exec_mode)
}