1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
// Copyright lowRISC contributors (OpenTitan project).
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
use super::Bit;
use anyhow::{bail, Context, Result};
use arrayvec::ArrayVec;
#[derive(Debug, PartialEq)]
enum Symbol {
Start,
Stop,
Byte { data: u8, nack: bool },
Broken(ArrayVec<Bit, 8>),
}
impl Symbol {
pub fn broken(data: u8, bits: usize) -> Result<Self> {
if !(1..8).contains(&bits) {
bail!("Samples must be between 1 and 7");
}
let buffer: ArrayVec<Bit, 8> = (0..bits).map(|bit| Bit::from(data << bit)).collect();
Ok(Self::Broken(buffer))
}
// We must extend the transaction: in a given sample, if data is written to SDA at the same time as SCL
// being driven high, then physical factors e.g. capacitance can cause the SDA write to appear before
// the SCL, even though the order of bitbanging is reversed. This can then cause a mistaken "STOP" signal
// to be received. We instead run at half frequency: on one cycle write SDA, and on the next write SCL.
// This makes GPIO bitbanging of I2C signals reliable.
// Assumes that SCL is low (0) when called.
pub fn bitbanging<const SDA: u8, const SCL: u8>(&self, samples: &mut Vec<u8>) {
match self {
// Each sample is translated into 2 samples: the first changes the SDA, and
// the second changes the SCL, to ensure correct ordering.
Symbol::Start => samples.extend([
// SDA high, SCL high
0x01 << SDA | 0x00 << SCL,
0x01 << SDA | 0x01 << SCL,
// SDA low, SCL high
0x00 << SDA | 0x01 << SCL,
0x00 << SDA | 0x01 << SCL,
// SDA low, SCL low
0x00 << SDA | 0x01 << SCL,
0x00 << SDA | 0x00 << SCL,
]),
Symbol::Stop => samples.extend([
// SDA low, SCL low
0x00 << SDA | 0x00 << SCL,
0x00 << SDA | 0x00 << SCL,
// SDA low, SCL high
0x00 << SDA | 0x00 << SCL,
0x00 << SDA | 0x01 << SCL,
// SDA high, SCL high
0x01 << SDA | 0x01 << SCL,
0x01 << SDA | 0x01 << SCL,
]),
Symbol::Byte { data, nack } => Self::bitbanging_byte::<SDA, SCL>(*data, *nack, samples),
Symbol::Broken(bits) => Self::bitbanging_bits::<SDA, SCL>(bits, samples),
}
}
fn bitbanging_byte<const SDA: u8, const SCL: u8>(byte: u8, nack: bool, samples: &mut Vec<u8>) {
let data: u16 = (byte as u16) << 1u16 | nack as u16;
samples.extend((0..9u8).rev().flat_map(|bit| {
[
// Change SDA (to data), SCL high
((((data >> bit) & 0x01) << SDA) | 0x00 << SCL) as u8,
((((data >> bit) & 0x01) << SDA) | 0x01 << SCL) as u8,
// Maintain SDA, SCL low
((((data >> bit) & 0x01) << SDA) | 0x01 << SCL) as u8,
((((data >> bit) & 0x01) << SDA) | 0x00 << SCL) as u8,
]
}));
}
fn bitbanging_bits<const SDA: u8, const SCL: u8>(bits: &[Bit], samples: &mut Vec<u8>) {
samples.extend(bits.iter().rev().flat_map(|bit| {
[
// Change SDA (to data), SCL high
((*bit as u8) << SDA) | 0x00 << SCL,
((*bit as u8) << SDA) | 0x01 << SCL,
// Maintain SDA, SCL low
((*bit as u8) << SDA) | 0x01 << SCL,
((*bit as u8) << SDA) | 0x00 << SCL,
]
}));
}
}
pub mod encoder {
use super::*;
#[derive(Debug, PartialEq)]
pub enum Transfer<'w> {
Start,
Stop,
Addr { addr: u8, read: bool, nack: bool },
Write(&'w [u8]),
Read(usize),
Broken(ArrayVec<Bit, 8>),
}
impl Transfer<'_> {
fn bitbanging<const SDA: u8, const SCL: u8>(
&self,
is_next_stop: bool,
samples: &mut Vec<u8>,
) {
match self {
Transfer::Start => Symbol::Start.bitbanging::<SDA, SCL>(samples),
Transfer::Stop => Symbol::Stop.bitbanging::<SDA, SCL>(samples),
Transfer::Addr { addr, read, nack } => Symbol::Byte {
data: (addr << 1) | *read as u8,
nack: *nack,
}
.bitbanging::<SDA, SCL>(samples),
Transfer::Write(bytes) => {
for byte in bytes.iter() {
Symbol::Byte {
data: *byte,
nack: true,
}
.bitbanging::<SDA, SCL>(samples)
}
}
Transfer::Broken(bits) => {
Symbol::Broken(bits.clone()).bitbanging::<SDA, SCL>(samples)
}
Transfer::Read(len) => {
for index in 0..*len {
Symbol::Byte {
data: 0xff,
nack: index >= (len - 1) && is_next_stop,
}
.bitbanging::<SDA, SCL>(samples)
}
}
}
}
}
pub struct Encoder<const SDA: u8, const SCL: u8> {}
impl<const SDA: u8, const SCL: u8> Encoder<SDA, SCL> {
// Note that this function will run I2C at half of the specified bitbanging sample frequency, because
// two cycles must be used per sample to ensure that changes to SDA appear before the rise of SCL,
// as otherwise I2C via GPIO bitbanging can be flaky.
pub fn run(&self, transfer: &[Transfer]) -> Vec<u8> {
let mut samples: Vec<u8> = Vec::new();
for window in transfer.windows(2) {
window[0]
.bitbanging::<SDA, SCL>(window.get(1) == Some(&Transfer::Stop), &mut samples)
}
// We missed the last element for using the windows function to peek, so we parse the last element here.
transfer
.iter()
.last()
.unwrap()
.bitbanging::<SDA, SCL>(false, &mut samples);
samples
}
}
}
pub mod decoder {
use super::*;
use std::iter::Peekable;
#[derive(Debug, PartialEq)]
pub enum Transfer<'b> {
Start,
Stop,
Addr { addr: u8, read: bool, nack: bool },
Bytes { data: &'b [u8], nack: bool },
Broken(ArrayVec<Bit, 8>),
}
impl<'a> std::convert::From<Symbol> for Transfer<'a> {
fn from(symbol: Symbol) -> Self {
match symbol {
Symbol::Start => Self::Start,
Symbol::Stop => Self::Stop,
Symbol::Broken(bits) => Self::Broken(bits),
_ => panic!("Can't convert {:?} into Transfer", symbol),
}
}
}
enum DecodingState {
Start,
Bytes,
}
#[derive(Clone, Debug)]
struct Sample<const SDA: u8, const SCL: u8> {
raw: u8,
}
impl<const SDA: u8, const SCL: u8> Sample<SDA, SCL> {
fn sda(&self) -> Bit {
((self.raw >> SDA) & 0x01).into()
}
fn scl(&self) -> Bit {
((self.raw >> SCL) & 0x01).into()
}
}
pub struct Decoder<const SDA: u8, const SCL: u8> {
pub buffer: [u8; 256],
}
impl<const SDA: u8, const SCL: u8> Decoder<SDA, SCL> {
/// Loops until the clk transitions to low.
/// Returns a symbol (Start|Stop) in case the sda transitions while the clk is high.
/// The caller must make sure that the clock was high in the previous sample.
fn sample_on_fall_edge<I>(samples: &mut I) -> Result<Option<Symbol>>
where
I: Iterator<Item = Sample<SDA, SCL>>,
{
let mut previous: Option<Sample<SDA, SCL>> = None;
for sample in samples.by_ref() {
if sample.scl() == Bit::Low {
return Ok(None); // No symbol found.
}
// If sda transitioned with the scl high it either means a stop or start symbol.
if let Some(previous) = previous {
if previous.sda() != sample.sda() {
return Ok(Some(match sample.sda() {
Bit::High => Symbol::Stop,
Bit::Low => Symbol::Start,
}));
}
}
previous = Some(sample);
}
bail!("Ran out of samples and did not find fall edge")
}
/// Returns a sample when a raise clock edge is detected.
/// This function will not consume the sample where the raise clock is detected.
/// The caller must make sure that the clock was low in the previous sample.
fn sample_on_raise_edge<I>(samples: &mut Peekable<I>) -> Option<Sample<SDA, SCL>>
where
I: Iterator<Item = Sample<SDA, SCL>>,
{
while samples.next_if(|sample| sample.scl() == Bit::Low).is_some() {}
samples.peek().cloned()
}
fn loop_until<I>(samples: &mut I, sda: Bit, scl: Bit) -> Option<Sample<SDA, SCL>>
where
I: Iterator<Item = Sample<SDA, SCL>>,
{
samples
.by_ref()
.find(|sample| sample.sda() == sda && sample.scl() == scl)
}
fn find_start<I>(samples: &mut I) -> Result<Sample<SDA, SCL>>
where
I: Iterator<Item = Sample<SDA, SCL>>,
{
'outer: loop {
// While clock and sda is not high.
Self::loop_until(samples, Bit::High, Bit::High)
.context("Beginning of start bit not found")?;
// SDA should transition to low while scl is high, marking the beginning of start condition.
for sample in samples.by_ref() {
if sample.scl() == Bit::Low {
continue 'outer;
}
if sample.sda() == Bit::Low {
return Ok(sample);
}
}
bail!("Start bit condition not found")
}
}
fn decode_symbol<I>(samples: &mut Peekable<I>) -> Result<Symbol>
where
I: Iterator<Item = Sample<SDA, SCL>>,
{
let mut byte = 0u16;
// 8 bits data + 1 bit ack/nack
for index in 0..9 {
let Ok(fall_sample) = Self::sample_on_fall_edge(samples) else {
return Symbol::broken(byte as u8, index);
};
// Return in case a symbol was detected during fall sampling.
if let Some(symbol) = fall_sample {
return Ok(symbol);
}
let Some(sample) = Self::sample_on_raise_edge(samples) else {
return Symbol::broken(byte as u8, index);
};
byte <<= 1;
byte |= sample.sda() as u16;
}
Ok(Symbol::Byte {
data: (byte >> 1) as u8,
nack: byte & 0x01 == 1,
})
}
pub fn run(&mut self, samples: Vec<u8>) -> Result<Vec<Transfer<'_>>> {
let mut samples = samples
.into_iter()
.map(|raw| Sample::<SDA, SCL> { raw })
.peekable();
Self::find_start(&mut samples)?;
let mut trans = vec![Transfer::Start];
let mut state = DecodingState::Start;
let mut head_offset = 0usize;
let mut buffer = &mut self.buffer[..];
while let Ok(symbol) = Self::decode_symbol(&mut samples) {
state = match state {
DecodingState::Start => match symbol {
Symbol::Byte { data, nack } => {
let read = (data & 1) == 1;
trans.push(Transfer::Addr {
addr: data >> 1,
read,
nack,
});
DecodingState::Bytes
}
_ => {
trans.push(symbol.into());
DecodingState::Start
}
},
DecodingState::Bytes => match symbol {
Symbol::Byte { data, nack } => {
buffer[head_offset] = data;
head_offset += 1;
assert!(head_offset < buffer.len());
if nack {
let (filled, empty) = buffer.split_at_mut(head_offset);
buffer = empty;
head_offset = 0;
trans.push(Transfer::Bytes { data: filled, nack });
DecodingState::Start
} else {
DecodingState::Bytes
}
}
Symbol::Start | Symbol::Stop => {
if head_offset > 0 {
let (filled, empty) = buffer.split_at_mut(head_offset);
buffer = empty;
head_offset = 0;
trans.push(Transfer::Bytes {
data: filled,
nack: false,
});
}
trans.push(symbol.into());
DecodingState::Start
}
Symbol::Broken(_) => {
trans.push(symbol.into());
DecodingState::Start
}
},
}
}
Ok(trans)
}
}
}