opentitanlib/bootstrap/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
// Copyright lowRISC contributors (OpenTitan project).
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
use anyhow::Result;
use clap::{Args, ValueEnum};
use humantime::parse_duration;
use serde::{Deserialize, Serialize};
use std::rc::Rc;
use std::time::Duration;
use thiserror::Error;
use crate::app::{NoProgressBar, TransportWrapper};
use crate::impl_serializable_error;
use crate::io::gpio::GpioPin;
use crate::io::spi::SpiParams;
use crate::io::uart::UartParams;
use crate::transport::{Capability, ProgressIndicator};
mod eeprom;
mod legacy;
mod legacy_rescue;
mod primitive;
pub use legacy::LegacyBootstrapError;
pub use legacy_rescue::LegacyRescueError;
#[derive(Debug, Error, Serialize, Deserialize)]
pub enum BootstrapError {
#[error("Invalid hash length: {0}")]
InvalidHashLength(usize),
}
impl_serializable_error!(BootstrapError);
/// `BootstrapProtocol` describes the supported types of bootstrap.
/// The `Primitive` SPI protocol is used by OpenTitan during development.
/// The `Legacy` SPI protocol is used by previous generations of Google Titan-class chips.
/// The `LegacyRescue` UART protocol is used by previous generations of Google Titan-class chips.
/// The `Eeprom` SPI protocol is planned to be implemented for OpenTitan.
/// The 'Emulator' value indicates that this tool has a direct way
/// of communicating with the OpenTitan emulator, to replace the
/// contents of the emulated flash storage.
#[derive(Clone, Copy, Debug, Serialize, Deserialize, PartialEq, Eq, ValueEnum)]
pub enum BootstrapProtocol {
Primitive,
Legacy,
LegacyRescue,
Eeprom,
Emulator,
}
// Implementations of bootstrap need to implement the `UpdateProtocol` trait.
trait UpdateProtocol {
/// Called before any action is taken, to allow the protocol to verify that the transport
/// supports SPI/UART or whatever it needs.
fn verify_capabilities(
&self,
container: &Bootstrap,
transport: &TransportWrapper,
) -> Result<()>;
/// Indicates whether the caller should assert the bootstrap pin and reset the chip, before
/// invoking update().
fn uses_common_bootstrap_reset(&self) -> bool;
/// Invoked to perform the actual transfer of an executable image to the OpenTitan chip.
fn update(
&self,
container: &Bootstrap,
transport: &TransportWrapper,
payload: &[u8],
progress: &dyn ProgressIndicator,
) -> Result<()>;
}
/// Options which control bootstrap behavior.
/// The meaning of each of these values depends on the specific bootstrap protocol being used.
#[derive(Clone, Debug, Args, Serialize, Deserialize)]
pub struct BootstrapOptions {
#[command(flatten)]
pub uart_params: UartParams,
#[command(flatten)]
pub spi_params: SpiParams,
/// Bootstrap protocol to use.
#[arg(short, long, value_enum, ignore_case = true, default_value = "eeprom")]
pub protocol: BootstrapProtocol,
/// Whether to reset target and clear UART RX buffer after bootstrap. For Chip Whisperer board only.
#[arg(long)]
pub clear_uart: Option<bool>,
/// Duration of the reset pulse.
#[arg(long, value_parser = parse_duration, default_value = "100ms")]
pub reset_delay: Duration,
/// If set, keep the bootstrap strapping applied and do not perform the post-bootstrap reset
/// sequence.
#[arg(long)]
pub leave_in_bootstrap: bool,
/// If set, leave the reset signal asserted after completed bootstrapping.
#[arg(long)]
pub leave_in_reset: bool,
/// Duration of the inter-frame delay.
#[arg(long, value_parser = parse_duration)]
pub inter_frame_delay: Option<Duration>,
/// Duration of the flash-erase delay.
#[arg(long, value_parser = parse_duration)]
pub flash_erase_delay: Option<Duration>,
}
/// Bootstrap wraps and drives the various bootstrap protocols.
pub struct Bootstrap<'a> {
pub protocol: BootstrapProtocol,
pub clear_uart_rx: bool,
pub uart_params: &'a UartParams,
pub spi_params: &'a SpiParams,
reset_pin: Rc<dyn GpioPin>,
reset_delay: Duration,
leave_in_reset: bool,
leave_in_bootstrap: bool,
}
impl<'a> Bootstrap<'a> {
/// Perform the update, sending the firmware `payload` to a SPI or UART target depending on
/// given `options`, which specifies protocol and port to use.
pub fn update(
transport: &TransportWrapper,
options: &BootstrapOptions,
payload: &[u8],
) -> Result<()> {
Self::update_with_progress(transport, options, payload, &NoProgressBar)
}
/// Perform the update, sending the firmware `payload` to a SPI or UART target depending on
/// given `options`, which specifies protocol and port to use. The `progress` callback will
/// be called with the flash address and length of each chunk sent to the target device.
pub fn update_with_progress(
transport: &TransportWrapper,
options: &BootstrapOptions,
payload: &[u8],
progress: &dyn ProgressIndicator,
) -> Result<()> {
if transport
.capabilities()?
.request(Capability::PROXY)
.ok()
.is_ok()
{
// The transport happens to be connection to a remove opentitan session. Pass
// payload along with all relevant command line arguments to the remote session, and
// it will run the actual bootstrapping logic.
transport.proxy_ops()?.bootstrap(options, payload)?;
return Ok(());
}
let updater: Box<dyn UpdateProtocol> = match options.protocol {
BootstrapProtocol::Primitive => Box::new(primitive::Primitive::new(options)),
BootstrapProtocol::Legacy => Box::new(legacy::Legacy::new(options)),
BootstrapProtocol::LegacyRescue => Box::new(legacy_rescue::LegacyRescue::new(options)),
BootstrapProtocol::Eeprom => Box::new(eeprom::Eeprom::new()),
BootstrapProtocol::Emulator => {
// Not intended to be implemented by this struct.
unimplemented!();
}
};
Bootstrap {
protocol: options.protocol,
clear_uart_rx: options.clear_uart.unwrap_or(false),
uart_params: &options.uart_params,
spi_params: &options.spi_params,
reset_pin: transport.gpio_pin("RESET")?,
reset_delay: options.reset_delay,
leave_in_reset: options.leave_in_reset,
leave_in_bootstrap: options.leave_in_bootstrap,
}
.do_update(updater, transport, payload, progress)
}
fn do_update(
&self,
updater: Box<dyn UpdateProtocol>,
transport: &TransportWrapper,
payload: &[u8],
progress: &dyn ProgressIndicator,
) -> Result<()> {
updater.verify_capabilities(self, transport)?;
let perform_bootstrap_reset = updater.uses_common_bootstrap_reset();
let rom_boot_strapping = transport.pin_strapping("ROM_BOOTSTRAP")?;
if perform_bootstrap_reset {
log::info!("Asserting bootstrap pins...");
rom_boot_strapping.apply()?;
transport.reset_target(self.reset_delay, self.clear_uart_rx)?;
log::info!("Performing bootstrap...");
}
let result = updater.update(self, transport, payload, progress);
if !self.leave_in_bootstrap && perform_bootstrap_reset {
if self.leave_in_reset {
log::info!("Releasing bootstrap pins, leaving device in reset...");
transport.pin_strapping("RESET")?.apply()?;
// For the case the ROM continuously monitors the bootstrapping pin, and boots the
// newly flashed image as soon as it is de-asserted, we only de-assert after
// having put the device under reset, in order to ensure that the caller can
// control when the newly flashed image gets to boot the first time.
rom_boot_strapping.remove()?;
} else {
log::info!("Releasing bootstrap pins, resetting device...");
rom_boot_strapping.remove()?;
// Don't clear the UART RX buffer after bootstrap to preserve the bootstrap
// output.
transport.reset_target(self.reset_delay, false)?;
}
}
result
}
}