opentitanlib/bootstrap/legacy_rescue.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
// Copyright lowRISC contributors (OpenTitan project).
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
use anyhow::{bail, ensure, Result};
use sha2::{Digest, Sha256};
use std::time::{Duration, Instant};
use thiserror::Error;
use zerocopy::{Immutable, IntoBytes};
use crate::app::TransportWrapper;
use crate::bootstrap::{Bootstrap, BootstrapOptions, UpdateProtocol};
use crate::impl_serializable_error;
use crate::io::uart::Uart;
use crate::transport::{Capability, ProgressIndicator};
#[derive(Immutable, IntoBytes, Debug, Default)]
#[repr(C)]
struct FrameHeader {
hash: [u8; Frame::HASH_LEN],
frame_num: u32,
flash_offset: u32,
}
#[derive(Immutable, IntoBytes, Debug)]
#[repr(C)]
struct Frame {
header: FrameHeader,
data: [u8; Frame::DATA_LEN],
}
impl Default for Frame {
fn default() -> Self {
Frame {
header: Default::default(),
data: [0xff; Frame::DATA_LEN],
}
}
}
impl Frame {
const FLASH_SECTOR_SIZE: usize = 2048;
const FLASH_SECTOR_MASK: usize = Self::FLASH_SECTOR_SIZE - 1;
const FLASH_BUFFER_SIZE: usize = 128;
const FLASH_BUFFER_MASK: usize = Self::FLASH_BUFFER_SIZE - 1;
const DATA_LEN: usize = 1024 - std::mem::size_of::<FrameHeader>();
const HASH_LEN: usize = 32;
const HEADER_ALIGNMENT: usize = 0x1000;
const GSC_FLASH_MEMMAP_OFFSET: usize = 0x80000;
const GSC_HEADER_LENGTH_FIELD_OFFSET: usize = 0x338;
const MAGIC_HEADER: [u8; 4] = [0xfd, 0xff, 0xff, 0xff];
const CRYPTOLIB_TELL: [u8; 4] = [0x53, 0x53, 0x53, 0x53];
/// Computes the hash in the header.
fn header_hash(&self) -> [u8; Frame::HASH_LEN] {
let frame = self.as_bytes();
let sha = Sha256::digest(&frame[Frame::HASH_LEN..]);
sha.into()
}
/// Computes the hash over the entire frame.
fn frame_hash(&self) -> [u8; Frame::HASH_LEN] {
let mut digest = Sha256::digest(self.as_bytes());
// Touch up zeroes into ones, as that is what the old chips are doing.
for b in &mut digest {
if *b == 0 {
*b = 1;
}
}
digest.into()
}
/// Creates a sequence of frames based on a `payload` binary.
fn from_payload(payload: &[u8]) -> Result<Vec<Frame>> {
// The given payload will contain up to four sections concatenated together:
// RO_A, RW_A optionally follwed by RO_B, RW_B
// Each section starts with a magic number on at least a 256 byte boundary.
// This rescue protocol uses the RW_A section only, which will start at the second
// occurrance of the magic value, and end at the third occurrence or at the end of the
// file.
ensure!(
payload.starts_with(&Self::MAGIC_HEADER),
LegacyRescueError::ImageFormatError
);
// Find second occurrence of magic value, not followed by signature of encrypted
// cryptolib, this will be the header of RW in slot A.
let min_addr = match payload[Self::HEADER_ALIGNMENT..]
.chunks(Self::HEADER_ALIGNMENT)
.position(|c| c[0..4] == Self::MAGIC_HEADER && c[4..8] != Self::CRYPTOLIB_TELL)
{
Some(n) => (n + 1) * Self::HEADER_ALIGNMENT,
None => bail!(LegacyRescueError::ImageFormatError),
};
// Inspect the length field of the RW header.
let length_field_at = min_addr + Self::GSC_HEADER_LENGTH_FIELD_OFFSET;
let max_addr = u32::from_le_bytes(payload[length_field_at..length_field_at + 4].try_into()?)
as usize
- Self::GSC_FLASH_MEMMAP_OFFSET;
// Trim trailing 0xff bytes.
let max_addr = (payload[..max_addr]
.chunks(4)
.rposition(|c| c != [0xff; 4])
.unwrap_or(0)
+ 1)
* 4;
// Round up to multiple of 128 bytes, this is to ensure that the bootloader flushes the
// last data transmitted, even in the absense of the "EOF" flag. The reason we do not
// send that flag is that doing so would cause an immediate boot into the code just
// programmed, and we want to allow the user to use --leave_in_reset to control exactly
// when the newly programmed code should first run.
let max_addr = (max_addr + Self::FLASH_BUFFER_SIZE - 1) & !Self::FLASH_BUFFER_MASK;
let mut frames = Vec::new();
let mut frame_num = 0;
let mut addr = min_addr;
while addr < max_addr {
// Try skipping over 0xffffffff words.
let nonempty_addr = addr
+ payload[addr..max_addr]
.chunks(4)
.position(|c| c != [0xff; 4])
.unwrap_or(0)
* 4;
let skip_addr = nonempty_addr & !Self::FLASH_SECTOR_MASK;
if skip_addr > addr && (addr == 0 || addr & Self::FLASH_BUFFER_MASK != 0) {
// Can only skip from the start or if the last addr wasn't an exact multiple of
// 128 (per H1D boot rom).
addr = skip_addr;
}
let mut frame = Frame {
header: FrameHeader {
frame_num,
flash_offset: addr as u32,
..Default::default()
},
..Default::default()
};
let slice_size = Self::DATA_LEN.min(max_addr - addr);
frame.data[..slice_size].copy_from_slice(&payload[addr..addr + slice_size]);
for i in slice_size..Self::DATA_LEN {
frame.data[i] = 0xFF;
}
frames.push(frame);
addr += Self::DATA_LEN;
frame_num += 1;
}
frames
.iter_mut()
.for_each(|f| f.header.hash = f.header_hash());
Ok(frames)
}
}
#[derive(Debug, Error, serde::Serialize, serde::Deserialize)]
pub enum LegacyRescueError {
#[error("Unrecognized image file format")]
ImageFormatError,
#[error("Synchronization error communicating with boot rom")]
SyncError,
#[error("Repeated errors communicating with boot rom")]
RepeatedErrors,
}
impl_serializable_error!(LegacyRescueError);
/// Implements the UART rescue protocol of Google Ti50 firmware.
pub struct LegacyRescue {}
impl LegacyRescue {
/// Abort if a block has not been accepted after this number of retries.
const MAX_CONSECUTIVE_ERRORS: u32 = 50;
/// Take some measure to regain protocol synchronization, in case of this number of retries
/// of the same block.
const RESYNC_AFTER_CONSECUTIVE_ERRORS: u32 = 3;
/// Creates a new `LegacyRescue` protocol updater from `options`.
pub fn new(_options: &BootstrapOptions) -> Self {
Self {}
}
/// Waits for some time for a character, returns None on timeout.
fn read_char(&self, uart: &dyn Uart) -> Option<char> {
let mut buf = [0u8; 1];
match uart.read_timeout(&mut buf, Duration::from_millis(100)) {
Ok(1) => Some(buf[0] as char),
Ok(_) => None,
_ => None,
}
}
/// Waits some time for data, returning true if the given string was seen in full, or false
/// as soon as a non-matching character is received or on timeout.
fn expect_string(&self, uart: &dyn Uart, s: &str) -> bool {
for expected_ch in s.chars() {
match self.read_char(uart) {
Some(ch) if ch == expected_ch => (),
_ => return false,
}
}
true
}
/// Reads and discards any characters in the receive buffer, waiting a little while for any
/// more which will also be discarded.
fn flush_rx(&self, uart: &dyn Uart, timeout: Duration) {
let mut response = [0u8; Frame::HASH_LEN];
loop {
match uart.read_timeout(&mut response, timeout) {
Ok(0) | Err(_) => break,
Ok(_) => continue,
}
}
}
/// As the 1024 byte blocks sent to the chip have no discernible header, the sender and
/// receiver could be "out of sync". This is resolved by sending one byte at a time, and
/// observing when the chip sends a response (which will be a rejection due to checksum).
fn synchronize(&self, uart: &dyn Uart) -> Result<()> {
// Most likely, only a few "extra" bytes have been sent during initial negotiation.
// Send almost a complete block in one go, and then send each of the last 16 bytes one
// at a time, slowly enough to detect a response before sending the next byte.
uart.write(&[0u8; 1008])?;
let mut response = [0u8; 1];
let limit = match uart.read_timeout(&mut response, Duration::from_millis(50)) {
Ok(0) | Err(_) => 16,
Ok(_) => {
// A response at this point must mean that more than 16 bytes had already been
// sent before entering this method. This will be resolved by doing another
// slower round of 1024 bytes with delay in between every one.
self.flush_rx(uart, Duration::from_millis(500));
1024
}
};
for _ in 0..limit {
uart.write(&[0u8; 1])?;
match uart.read_timeout(&mut response, Duration::from_millis(50)) {
Ok(0) | Err(_) => (),
Ok(_) => {
self.flush_rx(uart, Duration::from_millis(500));
return Ok(());
}
}
}
Err(LegacyRescueError::SyncError.into())
}
/// Reset the chip and send the magic 'r' character at the opportune moment during boot in
/// order to enter rescue more, repeat if necessary.
fn enter_rescue_mode(&self, container: &Bootstrap, uart: &dyn Uart) -> Result<()> {
// Attempt getting the attention of the bootloader.
let timeout = Duration::from_millis(2000);
for _ in 0..Self::MAX_CONSECUTIVE_ERRORS {
eprint!("Resetting...");
container.reset_pin.write(false)?; // Low active
uart.write(&[3])?; // Send a character to ensure that HyperDebug UART->USB
// forwarding has "woken up", see issue #19564.
self.flush_rx(uart, container.reset_delay);
container.reset_pin.write(true)?; // Release reset
let stopwatch = Instant::now();
while stopwatch.elapsed() < timeout {
if !self.expect_string(uart, "Bldr |") {
continue;
}
uart.write(b"r")?;
eprint!("a.");
while stopwatch.elapsed() < timeout {
if !self.expect_string(uart, "oops?|") {
continue;
}
uart.write(b"r")?;
eprint!("b.");
if self.expect_string(uart, "escue") {
eprintln!("c: Entered rescue mode!");
self.synchronize(uart)?;
return Ok(());
}
}
}
eprintln!(" Failed to enter rescue mode.");
}
Err(LegacyRescueError::RepeatedErrors.into())
}
}
impl UpdateProtocol for LegacyRescue {
fn verify_capabilities(
&self,
_container: &Bootstrap,
transport: &TransportWrapper,
) -> Result<()> {
transport
.capabilities()?
.request(Capability::GPIO | Capability::UART)
.ok()?;
Ok(())
}
/// Returns false, in order to as the containing Bootstrap struct to not perform standard
/// BOOTSTRAP/RESET sequence.
fn uses_common_bootstrap_reset(&self) -> bool {
false
}
/// Performs the update protocol using the `transport` with the firmware `payload`.
fn update(
&self,
container: &Bootstrap,
transport: &TransportWrapper,
payload: &[u8],
progress: &dyn ProgressIndicator,
) -> Result<()> {
let frames = Frame::from_payload(payload)?;
let uart = container.uart_params.create(transport)?;
self.enter_rescue_mode(container, &*uart)?;
// Send frames one at a time.
progress.new_stage("", frames.len() * Frame::DATA_LEN);
'next_block: for (idx, frame) in frames.iter().enumerate() {
for consecutive_errors in 0..Self::MAX_CONSECUTIVE_ERRORS {
progress.progress(idx * Frame::DATA_LEN);
uart.write(frame.as_bytes())?;
let mut response = [0u8; Frame::HASH_LEN];
let mut index = 0;
while index < Frame::HASH_LEN {
let timeout = if index == 0 {
Duration::from_millis(1000)
} else {
Duration::from_millis(10)
};
match uart.read_timeout(&mut response[index..], timeout) {
Ok(0) | Err(_) => break,
Ok(n) => index += n,
}
}
if index < Frame::HASH_LEN {
eprint!("sync.");
self.synchronize(&*uart)?;
continue;
}
if response[4..].chunks(4).all(|x| x == &response[..4]) {
eprint!("sync.");
self.synchronize(&*uart)?;
} else if response == frame.frame_hash() {
continue 'next_block;
} else {
self.flush_rx(&*uart, Duration::from_millis(500));
if consecutive_errors >= Self::RESYNC_AFTER_CONSECUTIVE_ERRORS {
eprint!("sync.");
self.synchronize(&*uart)?;
}
}
}
bail!(LegacyRescueError::RepeatedErrors);
}
// Reset, in order to leave rescue mode.
container.reset_pin.write(false)?; // Low active
if !container.leave_in_reset {
std::thread::sleep(container.reset_delay);
container.reset_pin.write(true)?; // Release reset
}
progress.progress(frames.len() * Frame::DATA_LEN);
eprintln!("Success!");
Ok(())
}
}