Software APIs
dt_uart.h
Go to the documentation of this file.
1
// Copyright lowRISC contributors (OpenTitan project).
2
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
3
// SPDX-License-Identifier: Apache-2.0
4
//
5
// Device table API auto-generated by `dtgen`
6
7
#ifndef OPENTITAN_DT_UART_H_
8
#define OPENTITAN_DT_UART_H_
9
10
#ifdef __cplusplus
11
extern
"C"
{
12
#endif
// __cplusplus
13
14
/**
15
* @file
16
* @brief Device Tables (DT) for IP uart and top darjeeling.
17
*
18
* This file contains the type definitions and global functions of the uart.
19
*/
20
21
#include "hw/top/dt/dt_api.h"
22
#include <stdint.h>
23
24
25
26
/**
27
* List of instances.
28
*/
29
typedef
enum
dt_uart
{
30
kDtUart0
= 0,
/**< uart0 */
31
kDtUartFirst = 0,
/**< \internal First instance */
32
kDtUartCount = 1,
/**< \internal Number of instances */
33
}
dt_uart_t
;
34
35
/**
36
* List of register blocks.
37
*
38
* Register blocks are guaranteed to start at 0 and to be consecutively numbered.
39
*/
40
typedef
enum
dt_uart_reg_block
{
41
kDtUartRegBlockCore = 0,
/**< */
42
kDtUartRegBlockCount = 1,
/**< \internal Number of register blocks */
43
}
dt_uart_reg_block_t
;
44
45
/** Primary register block (associated with the "primary" set of registers that control the IP). */
46
static
const
dt_uart_reg_block_t
kDtUartRegBlockPrimary = kDtUartRegBlockCore;
47
48
/**
49
* List of memories.
50
*
51
* Memories are guaranteed to start at 0 and to be consecutively numbered.
52
*/
53
typedef
enum
dt_uart_memory
{
54
kDtUartMemoryCount = 0,
/**< \internal Number of memories */
55
}
dt_uart_memory_t
;
56
57
/**
58
* List of IRQs.
59
*
60
* IRQs are guaranteed to be numbered consecutively from 0.
61
*/
62
typedef
enum
dt_uart_irq
{
63
kDtUartIrqTxWatermark
= 0,
/**< raised if the transmit FIFO is past the high-water mark. */
64
kDtUartIrqRxWatermark
= 1,
/**< raised if the receive FIFO is past the high-water mark. */
65
kDtUartIrqTxDone
= 2,
/**< raised if the transmit FIFO has emptied and no transmit is ongoing. */
66
kDtUartIrqRxOverflow
= 3,
/**< raised if the receive FIFO has overflowed. */
67
kDtUartIrqRxFrameErr
= 4,
/**< raised if a framing error has been detected on receive. */
68
kDtUartIrqRxBreakErr
= 5,
/**< raised if break condition has been detected on receive. */
69
kDtUartIrqRxTimeout
= 6,
/**< raised if RX FIFO has characters remaining in the FIFO without being
70
retrieved for the programmed time period. */
71
kDtUartIrqRxParityErr
= 7,
/**< raised if the receiver has detected a parity error. */
72
kDtUartIrqTxEmpty
= 8,
/**< raised if the transmit FIFO is empty. */
73
kDtUartIrqCount = 9,
/**< \internal Number of IRQs */
74
}
dt_uart_irq_t
;
75
76
/**
77
* List of Alerts.
78
*
79
* Alerts are guaranteed to be numbered consecutively from 0.
80
*/
81
typedef
enum
dt_uart_alert
{
82
kDtUartAlertFatalFault
= 0,
/**< This fatal alert is triggered when a fatal TL-UL bus integrity fault is detected. */
83
kDtUartAlertCount = 1,
/**< \internal Number of Alerts */
84
}
dt_uart_alert_t
;
85
86
/**
87
* List of clock ports.
88
*
89
* Clock ports are guaranteed to be numbered consecutively from 0.
90
*/
91
typedef
enum
dt_uart_clock
{
92
kDtUartClockClk
= 0,
/**< Clock port clk_i */
93
kDtUartClockCount = 1,
/**< \internal Number of clock ports */
94
}
dt_uart_clock_t
;
95
96
/**
97
* List of reset ports.
98
*
99
* Reset ports are guaranteed to be numbered consecutively from 0.
100
*/
101
typedef
enum
dt_uart_reset
{
102
kDtUartResetRst
= 0,
/**< Reset port rst_ni */
103
kDtUartResetCount = 1,
/**< \internal Number of reset ports */
104
}
dt_uart_reset_t
;
105
106
/**
107
* List of peripheral I/O.
108
*
109
* Peripheral I/O are guaranteed to be numbered consecutively from 0.
110
*/
111
typedef
enum
dt_uart_periph_io
{
112
kDtUartPeriphIoRx = 0,
/**< */
113
kDtUartPeriphIoTx = 1,
/**< */
114
kDtUartPeriphIoCount = 2,
/**< \internal Number of peripheral I/O */
115
}
dt_uart_periph_io_t
;
116
117
/**
118
* List of supported hardware features.
119
*/
120
#define OPENTITAN_UART_HAS_PARITY 1
121
#define OPENTITAN_UART_HAS_LINE_LOOPBACK 1
122
#define OPENTITAN_UART_HAS_SYSTEM_LOOPBACK 1
123
#define OPENTITAN_UART_HAS_BAUD_RATE_CONTROL 1
124
#define OPENTITAN_UART_HAS_LINE_BREAK 1
125
#define OPENTITAN_UART_HAS_FIFO_INTERRUPTS 1
126
127
128
129
/**
130
* Get the uart instance from an instance ID
131
*
132
* For example, `dt_uart_from_instance_id(kDtInstanceIdUart3) == kDtUart3`.
133
*
134
* @param inst_id Instance ID.
135
* @return A uart instance.
136
*
137
* **Note:** This function only makes sense if the instance ID has device type uart,
138
* otherwise the returned value is unspecified.
139
*/
140
dt_uart_t
dt_uart_from_instance_id
(
dt_instance_id_t
inst_id);
141
142
/**
143
* Get the instance ID of an instance.
144
*
145
* @param dt Instance of uart.
146
* @return The instance ID of that instance.
147
*/
148
dt_instance_id_t
dt_uart_instance_id
(
dt_uart_t
dt);
149
150
/**
151
* Get the register base address of an instance.
152
*
153
* @param dt Instance of uart.
154
* @param reg_block The register block requested.
155
* @return The register base address of the requested block.
156
*/
157
uint32_t
dt_uart_reg_block
(
158
dt_uart_t
dt,
159
dt_uart_reg_block_t
reg_block);
160
161
/**
162
* Get the primary register base address of an instance.
163
*
164
* This is just a convenience function, equivalent to
165
* `dt_uart_reg_block(dt, kDtUartRegBlockCore)`
166
*
167
* @param dt Instance of uart.
168
* @return The register base address of the primary register block.
169
*/
170
static
inline
uint32_t dt_uart_primary_reg_block(
171
dt_uart_t
dt) {
172
return
dt_uart_reg_block
(dt, kDtUartRegBlockCore);
173
}
174
175
/**
176
* Get the base address of a memory.
177
*
178
* @param dt Instance of uart.
179
* @param mem The memory requested.
180
* @return The base address of the requested memory.
181
*/
182
uint32_t
dt_uart_memory_base
(
183
dt_uart_t
dt,
184
dt_uart_memory_t
mem);
185
186
/**
187
* Get the size of a memory.
188
*
189
* @param dt Instance of uart.
190
* @param mem The memory requested.
191
* @return The size of the requested memory.
192
*/
193
uint32_t
dt_uart_memory_size
(
194
dt_uart_t
dt,
195
dt_uart_memory_t
mem);
196
197
/**
198
* Get the PLIC ID of a uart IRQ for a given instance.
199
*
200
* If the instance is not connected to the PLIC, this function
201
* will return `kDtPlicIrqIdNone`.
202
*
203
* @param dt Instance of uart.
204
* @param irq A uart IRQ.
205
* @return The PLIC ID of the IRQ of this instance.
206
*/
207
dt_plic_irq_id_t
dt_uart_irq_to_plic_id
(
208
dt_uart_t
dt,
209
dt_uart_irq_t
irq);
210
211
/**
212
* Convert a global IRQ ID to a local uart IRQ type.
213
*
214
* @param dt Instance of uart.
215
* @param irq A PLIC ID that belongs to this instance.
216
* @return The uart IRQ, or `kDtUartIrqCount`.
217
*
218
* **Note:** This function assumes that the PLIC ID belongs to the instance
219
* of uart passed in parameter. In other words, it must be the case that
220
* `dt_uart_instance_id(dt) == dt_plic_id_to_instance_id(irq)`. Otherwise, this function
221
* will return `kDtUartIrqCount`.
222
*/
223
dt_uart_irq_t
dt_uart_irq_from_plic_id
(
224
dt_uart_t
dt,
225
dt_plic_irq_id_t
irq);
226
227
228
/**
229
* Get the alert ID of a uart alert for a given instance.
230
*
231
* **Note:** This function only makes sense if the instance is connected to the Alert Handler. For any
232
* instances where the instance is not connected, the return value is unspecified.
233
*
234
* @param dt Instance of uart.
235
* @param alert A uart alert.
236
* @return The Alert Handler alert ID of the alert of this instance.
237
*/
238
dt_alert_id_t
dt_uart_alert_to_alert_id
(
239
dt_uart_t
dt,
240
dt_uart_alert_t
alert);
241
242
/**
243
* Convert a global alert ID to a local uart alert type.
244
*
245
* @param dt Instance of uart.
246
* @param alert A global alert ID that belongs to this instance.
247
* @return The uart alert, or `kDtUartAlertCount`.
248
*
249
* **Note:** This function assumes that the global alert ID belongs to the
250
* instance of uart passed in parameter. In other words, it must be the case
251
* that `dt_uart_instance_id(dt) == dt_alert_id_to_instance_id(alert)`. Otherwise,
252
* this function will return `kDtUartAlertCount`.
253
*/
254
dt_uart_alert_t
dt_uart_alert_from_alert_id
(
255
dt_uart_t
dt,
256
dt_alert_id_t
alert);
257
258
259
/**
260
* Get the peripheral I/O description of an instance.
261
*
262
* @param dt Instance of uart.
263
* @param sig Requested peripheral I/O.
264
* @return Description of the requested peripheral I/O for this instance.
265
*/
266
dt_periph_io_t
dt_uart_periph_io
(
267
dt_uart_t
dt,
268
dt_uart_periph_io_t
sig);
269
270
/**
271
* Get the clock signal connected to a clock port of an instance.
272
*
273
* @param dt Instance of uart.
274
* @param clk Clock port.
275
* @return Clock signal.
276
*/
277
dt_clock_t
dt_uart_clock
(
278
dt_uart_t
dt,
279
dt_uart_clock_t
clk);
280
281
/**
282
* Get the reset signal connected to a reset port of an instance.
283
*
284
* @param dt Instance of uart.
285
* @param rst Reset port.
286
* @return Reset signal.
287
*/
288
dt_reset_t
dt_uart_reset
(
289
dt_uart_t
dt,
290
dt_uart_reset_t
rst);
291
292
293
294
#ifdef __cplusplus
295
}
// extern "C"
296
#endif
// __cplusplus
297
298
#endif
// OPENTITAN_DT_UART_H_
(darjeeling)
hw
top
dt
dt_uart.h
Return to
OpenTitan Documentation